Skip to main content

Making SMART Signal even smarter

According to researchers at the University of Minnesota, most traffic signals in the US are only retimed every two to five years (or longer), largely due to the expense associated with retiming efforts. However, over the past several years, University of Minnesota researchers have developed and refined its SMART Signal system to make it easier and less expensive to retime signals. The system, developed with funding from the Minnesota Department of Transportation (MnDOT), not only collects traffic and si
April 20, 2015 Read time: 2 mins
According to researchers at the 584 University of Minnesota, most traffic signals in the US are only retimed every two to five years (or longer), largely due to the expense associated with retiming efforts. However, over the past several years, University of Minnesota researchers have developed and refined its SMART Signal system to make it easier and less expensive to retime signals.

The system, developed with funding from the 2103 Minnesota Department of Transportation (MnDOT), not only collects traffic and signal-phase data automatically, but it also identifies under-performing traffic signals and generates optimal signal timing plans with minimal human intervention.

MnDOT, along with many US cities and counties embeds loop detectors in roads that notify a traffic signal when a vehicle is present. Staff normally must manually track wait times to determine how signal timing is affecting traffic.

The researchers claim SMART Signal automates much of this process by recording how long a vehicle waits at an intersection and automatically reporting the data, along with signal timing, to a central server. The data, viewable in real-time on a website, —can then be analysed to determine traffic patterns and optimal signal timing. By reducing the cost of data collection and performance measurement, SMART Signal allows MnDOT to base signal retiming decisions on performance rather than a fixed schedule.

The latest research optimises the system’s ability to reduce traffic delays by developing a framework to diagnose problems that cause delays at traffic signals and an algorithm that automatically optimises the signal plan to address these problems.

The enhancements were successfully tested on Highway 13, reducing vehicle delay there by five per cent. Researchers say the benefit could be in the double digits for corridors with worse traffic delays.

The soft ware upgrade has since been integrated into the more than 100 intersections in Minnesota equipped with the SMART Signal system.
UTC

Related Content

  • September 26, 2013
    Smart signal software ‘has potential for ICM’
    Software developed by researchers from the University of Minnesota for the Smart (Systematic Monitoring of Arterial Road and Traffic Signals) signal system automatically collects and processes data from traffic signal controllers at multiple intersections. It then creates performance measures, including information on the times and locations congestion occurs on a roadway. A new version of the software has been deployed at more than fifty intersections managed by the Minnesota Department of Transportatio
  • February 15, 2013
    Estimating winter road recovery time with traffic data
    In Minnesota, US, the most common measure for snow management performance is the time it takes to completely clear a roadway after a snow event ends. Currently, the Minnesota Department of Transportation (MnDOT) relies on visual inspections by its field crews to estimate this bare pavement recovery time. To help MnDOT more accurately and reliably estimate the performance of its snow management activities, researchers from the University of Minnesota Duluth (UMD) have developed a prototype process that uses
  • January 31, 2012
    Intersection collision avoidance system trial
    Although much of the emphasis of research into intersection management has tended to concentrate on the needs of urban locations, there remain specific issues pertaining to rural intersections which need to be addressed. Here, Rebecca Szymkowski and Greg Helgeson, Wisconsin DOT, Todd Szymkowski, University of Wisconsin-Madison, and Craig Shankwitz and Arvind Menon, University of Minnesota detail progress on an intersection collision avoidance system for more remote locations.
  • October 17, 2012
    Benefits of SMART Signal system
    Developed by researchers led by civil engineering associate professor Henry Liu at the University of Minnesota, the SMART Signal (Systematic Monitoring of Arterial Road Traffic Signals) system is said to be reducing congestion on roads controlled by traffic lights. The system automatically collects and processes data from traffic signal controllers at multiple intersections. It then creates performance measures, including information on the times and locations congestion occurs on a given road. Traffic eng