Skip to main content

Intelligent lane control signals help direct driver behaviour

As part of a larger effort exploring the effects of roadway signage on driver behaviour, researchers from the University of Minnesota College of Design have conducted a study on the effectiveness of intelligent lane control signals (ILCS). During the study, was funded by the Minnesota Department of Transportation (MnDOT), the research team used a driving simulator to test ILCS that displayed merge, speed control, and lane-closure warnings over freeway lanes. The researchers were specifically interested in d
November 21, 2012 Read time: 3 mins
As part of a larger effort exploring the effects of roadway signage on driver behaviour, researchers from the University of Minnesota College of Design have conducted a study on the effectiveness of intelligent lane control signals (ILCS).

During the study, was funded by the 2103 Minnesota Department of Transportation (MnDOT), the research team used a driving simulator to test ILCS that displayed merge, speed control, and lane-closure warnings over freeway lanes. The researchers were specifically interested in determining which type of merge signs - diagonal arrows, words, or dynamic chevrons - had the most effect on drivers’ behaviour.

Study participants drove on a six-lane divided highway in a driving simulator, where they were presented with five sets of ILCS prompting them to reduce their speed and merge out of the centre lane. The researchers collected lane position and driving speed data from each participant to determine how effectively the signs conveyed their intended messages.

Overall results indicate that the ILCS are effective at directing driver behaviour. Most participants reduced their speed when they approached the speed signs, and the majority of drivers merged out of the centre lane as they approached the first ILCS displaying a lane closure warning.

“This research allowed MnDOT to determine how well motorists understand the messages used on our ILCS,” says Brian Kary, freeway operations engineer at MnDOT. “The Active Traffic Management System on I-35W is one of the first in the nation, so there had been little guidance as to the types of messages to display.”

Specifically, the researchers found that drivers responded to the diagonal arrow merge signs much earlier than to the merge signs with words or chevrons. Participants changed lanes 266 feet before reaching the arrow merge sign, compared to 123 feet before the chevron and 54 feet before the words. The simplicity of the arrow sign was probably a factor, the researchers say. The arrow was larger and simpler than the other two sign types and likely took less time for drivers to process.

The study also included a survey that asked participants for their opinions of ILCS and other changeable message signs. Most participants had positive opinions of the signs, particularly those that display information on travel time, traffic problems, and roadway maintenance schedules.

For more information on companies in this article

Related Content

  • TRL: Cities must do more to help VRUs
    May 9, 2019
    UK cities must learn from the Netherlands and Denmark if active travel and increased safety for vulnerable road users are to co-exist, says TRL’s Marcus Jones Active travel’ refers to modes of transport in which physical effort is required to undertake purposeful journeys - for example, walking or cycling to school, work or the local shops, as well as walking and standing as part of accessing public transport. The benefits of replacing short car journeys with more active forms of transport are obvious. Act
  • Applied Information’s app gets Marietta connected
    October 26, 2017
    Must the benefits of connected vehicle technology wait for a generation of new or retrofitted vehicles? The US city of Marietta is about to find out. Can connected vehicle functionality be delivered via a smartphone? Well, in Marietta, Georgia, they are about to answer that question. The city is testing a smartphone app which warns motorists of nearby cyclists and pedestrians, approaching first responders, wrong-way driving, entering active school zones and much more.
  • 3M invests US$1.3 million in tolling technology testing
    April 8, 2014
    3M is investing $1.3million to expand its research center to develop and test tolling and public safety products, and customers can use it too. When 3M opened its Transportation Safety Research Center (TSRC) in the 1970s it was as an extension of its research facilities. More than a showcase for innovation, the center was—and continues to be—a dynamic outdoor laboratory where new traffic materials, systems, vehicle safety and public safety products are tested in real-world conditions. Now, with 3M expanding
  • Michigan improves real time traffic information
    June 24, 2013
    Michigan’s Road Commission for Oakland County (RCOC) has revamped its online real-time traffic map, making the congestion-monitoring tool simpler, easier and faster to use. The changes allow users to see congestion levels on county roads across Oakland County, thanks to data provided by RCOC’s Faster and Safer Travel through Traffic Routing and Advanced Controls (Fast-Trac) adaptive traffic-signal system. Fast-Trac detects the volume of traffic moving in each direction at equipped intersections and uses th