Skip to main content

Intelligent lane control signals help direct driver behaviour

As part of a larger effort exploring the effects of roadway signage on driver behaviour, researchers from the University of Minnesota College of Design have conducted a study on the effectiveness of intelligent lane control signals (ILCS). During the study, was funded by the Minnesota Department of Transportation (MnDOT), the research team used a driving simulator to test ILCS that displayed merge, speed control, and lane-closure warnings over freeway lanes. The researchers were specifically interested in d
November 21, 2012 Read time: 3 mins
As part of a larger effort exploring the effects of roadway signage on driver behaviour, researchers from the University of Minnesota College of Design have conducted a study on the effectiveness of intelligent lane control signals (ILCS).

During the study, was funded by the 2103 Minnesota Department of Transportation (MnDOT), the research team used a driving simulator to test ILCS that displayed merge, speed control, and lane-closure warnings over freeway lanes. The researchers were specifically interested in determining which type of merge signs - diagonal arrows, words, or dynamic chevrons - had the most effect on drivers’ behaviour.

Study participants drove on a six-lane divided highway in a driving simulator, where they were presented with five sets of ILCS prompting them to reduce their speed and merge out of the centre lane. The researchers collected lane position and driving speed data from each participant to determine how effectively the signs conveyed their intended messages.

Overall results indicate that the ILCS are effective at directing driver behaviour. Most participants reduced their speed when they approached the speed signs, and the majority of drivers merged out of the centre lane as they approached the first ILCS displaying a lane closure warning.

“This research allowed MnDOT to determine how well motorists understand the messages used on our ILCS,” says Brian Kary, freeway operations engineer at MnDOT. “The Active Traffic Management System on I-35W is one of the first in the nation, so there had been little guidance as to the types of messages to display.”

Specifically, the researchers found that drivers responded to the diagonal arrow merge signs much earlier than to the merge signs with words or chevrons. Participants changed lanes 266 feet before reaching the arrow merge sign, compared to 123 feet before the chevron and 54 feet before the words. The simplicity of the arrow sign was probably a factor, the researchers say. The arrow was larger and simpler than the other two sign types and likely took less time for drivers to process.

The study also included a survey that asked participants for their opinions of ILCS and other changeable message signs. Most participants had positive opinions of the signs, particularly those that display information on travel time, traffic problems, and roadway maintenance schedules.

For more information on companies in this article

Related Content

  • Bristol’s buses trial CycleEye detection system
    July 7, 2017
    Fusion Processing’s Jim Hutchinson looks at a two-year trial of the company’s cyclist detection system. Is cycling in a city dangerous? Well, that depends where you are and how you view statistics. Malmö is far more bike-friendly than Mumbai and the risk can either be perceived as small - one death per 29 million miles cycled in the UK in 2013 - or large - that equated to 109 deaths in the same year. Whatever your personal take on the data, the effect of these accidents can be felt indirectly too. News of c
  • Red, yellow, green - and WHITE?!
    July 19, 2024
    What on earth is ‘white phase’? Ali Hajbabaie from North Carolina State University tells Adam Hill why red, yellow and green lights may soon no longer be enough at traffic lights
  • ITS needs data highways
    November 18, 2014
    Transport and traffic data is on the increase but there must be an integrated data highway to derive the maximum ITS benefits, argues Deutsche Telekom. From public transport operators recording increasingly precise and comprehensive data on their vehicle’s position and driving behaviour to local authorities using RFID and video systems to control traffic on their streets and highways, the amount of traffic data is growing rapidly.
  • Cooperative road infrastructures - progress and the future
    February 1, 2012
    Robert Bertini, deputy administrator of the USDOT's Research and Innovative Technology Administration, discusses the research and deployment paths of cooperative road infrastructures. High-level analysis by the US's National Highway Traffic Safety Administration (NHTSA) of the potential of Vehicle-to-Infrastructure/Infrastructure-to-Vehicle (V2I/I2V) and Vehicle-to-Vehicle (V2V) technologies indicates that V2V could in exclusivity address a large proportion of crashes involving unimpaired drivers. In fact,