Skip to main content

IBM Big Data helps Dublin improve transport operations

The city of Dublin is using IBM Big Data identify and solve the root causes of traffic congestion in its public transport network throughout the city, which means improved traffic flow and better mobility for commuters. Integrating data from a citywide network of sensors with geospatial data means that city officials are able to better monitor and manage traffic in real time. To keep the city moving, the council’s traffic control centre works together with local transport operators to manage an extensive ne
May 17, 2013 Read time: 3 mins
The city of Dublin is using 62 IBM Big Data identify and solve the root causes of traffic congestion in its public transport network throughout the city, which means improved traffic flow and better mobility for commuters. Integrating data from a citywide network of sensors with geospatial data means that city officials are able to better monitor and manage traffic in real time.

To keep the city moving, the council’s traffic control centre works together with local transport operators to manage an extensive network of roads, tramways and bus lanes.

In a collaboration with IBM researchers, its road and traffic department is now able to combine Big Data streaming in from an array of sources – bus timetables, inductive-loop traffic detectors, and closed-circuit television cameras, GPS updates that each of the city’s 1,000 buses transmits every twenty seconds – and build a digital map of the city overlaid with the real-time positions of Dublin’s buses using stream computing and geospatial data.

Traffic controllers can now see the current status of the entire bus network at a glance and rapidly spot and drill down into a detailed visualisation of areas of the network that are experiencing delay giving them an opportunity to identify the cause of the delay as it is emerging and before it moves further downstream.

With improved reporting now in place, the data can help the city identify the optimal traffic-calming measures to reduce congestion. It can also help answer questions such as whether the bus line start times are correct or the best place to add additional bus lanes and bus-only traffic systems.

“Until recently we had a fragmented view of the overall health and real-time status of Dublin’s transport network, making it very difficult to identify traffic congestion in its early stages because the causes of a delay had often moved on,” said Brendan O’Brien, head of technical services, Roads and Traffic Department at 7086 Dublin City Council. “As a result of the research collaboration we now have a better idea of how multiple data can be merged from across different sources and the IBM research prototypes show what can be achieved in this area.”

“Constantly in motion, cities generate enormous amounts of data that can help officials deliver a better quality of life for its citizens and build competitive advantage with the right tools,” said Dr. Francesco Calabrese, Research Manager, Smarter Urban Dynamics, IBM Research - Dublin.  “Dublin is becoming a smarter city by harnessing Big Data, extracting actionable insights from its transport data and delivering these instantly to decision makers so they can improve traffic flow and awareness of how to prepare for their future transportation need.”

For more information on companies in this article

Related Content

  • Inrix informs FHWA’s data improvements
    December 19, 2017
    Refinements in the data available from the US Federal Highway Administration will improve road management across America. David Crawford reports. In August 2017, the US Federal Highway Administration (FHWA) issued the first results from an upgraded version of its National Performance Management Research Data Set (NPMRDS). Developed to identify the locations and times of high congestion affecting traffic flows along America’s 259,000km (161,000 mile) national highway system, this is a key resource for sta
  • Real time active traffic management improves travel times
    July 17, 2012
    Traffic management centres (TMC) have traditionally served to provide surveillance and responses to traffic incidents and recurring and non-recurring changes in road networks. Typically, a TMC collected field data from the roadway and transit infrastructure and provided the integration necessary for operators to see what was happening and then coordinate a response. Standard operating procedures (SOPs) guided operators on how to respond to a given situation. It eventually became impractical for TMC operat
  • Orange County to manage traffic with trial interoperable CCTV
    September 12, 2014
    Interoperable CCTV can provide early warning of problems and help improve traffic management and incident response as Morteza Fahrtash and Carlos Ortiz explain. California’s transportation system is one of the state’s defining features and Caltrans (California Department of Transportation) strives to improving mobility across the state through the design, construction, operation and maintenance of the network of highway, freeways, toll roads and expressways.
  • High-res traffic data provides planners with the big picture
    November 5, 2015
    Road authorities have a lot to gain from high-resolution traffic data, argues Pravin Varaiya. Traffic engineers have traditionally been forced to operate with limited data regarding the performance of their arterials. Traffic studies are often commissioned once every three years, over a few days, to get an updated estimate of utilization.