Skip to main content

IBM Big Data helps Dublin improve transport operations

The city of Dublin is using IBM Big Data identify and solve the root causes of traffic congestion in its public transport network throughout the city, which means improved traffic flow and better mobility for commuters. Integrating data from a citywide network of sensors with geospatial data means that city officials are able to better monitor and manage traffic in real time. To keep the city moving, the council’s traffic control centre works together with local transport operators to manage an extensive ne
May 17, 2013 Read time: 3 mins
The city of Dublin is using 62 IBM Big Data identify and solve the root causes of traffic congestion in its public transport network throughout the city, which means improved traffic flow and better mobility for commuters. Integrating data from a citywide network of sensors with geospatial data means that city officials are able to better monitor and manage traffic in real time.

To keep the city moving, the council’s traffic control centre works together with local transport operators to manage an extensive network of roads, tramways and bus lanes.

In a collaboration with IBM researchers, its road and traffic department is now able to combine Big Data streaming in from an array of sources – bus timetables, inductive-loop traffic detectors, and closed-circuit television cameras, GPS updates that each of the city’s 1,000 buses transmits every twenty seconds – and build a digital map of the city overlaid with the real-time positions of Dublin’s buses using stream computing and geospatial data.

Traffic controllers can now see the current status of the entire bus network at a glance and rapidly spot and drill down into a detailed visualisation of areas of the network that are experiencing delay giving them an opportunity to identify the cause of the delay as it is emerging and before it moves further downstream.

With improved reporting now in place, the data can help the city identify the optimal traffic-calming measures to reduce congestion. It can also help answer questions such as whether the bus line start times are correct or the best place to add additional bus lanes and bus-only traffic systems.

“Until recently we had a fragmented view of the overall health and real-time status of Dublin’s transport network, making it very difficult to identify traffic congestion in its early stages because the causes of a delay had often moved on,” said Brendan O’Brien, head of technical services, Roads and Traffic Department at 7086 Dublin City Council. “As a result of the research collaboration we now have a better idea of how multiple data can be merged from across different sources and the IBM research prototypes show what can be achieved in this area.”

“Constantly in motion, cities generate enormous amounts of data that can help officials deliver a better quality of life for its citizens and build competitive advantage with the right tools,” said Dr. Francesco Calabrese, Research Manager, Smarter Urban Dynamics, IBM Research - Dublin.  “Dublin is becoming a smarter city by harnessing Big Data, extracting actionable insights from its transport data and delivering these instantly to decision makers so they can improve traffic flow and awareness of how to prepare for their future transportation need.”

For more information on companies in this article

Related Content

  • Hertfordshire’s traffic control centre ‘improves congestion’
    March 13, 2013
    As part of a wider Hertfordshire County Council strategy to ease congestion across the county, the council is installing variable message signs to provide live incident information, managed by a centralised control centre at County Hall. The centre opened in October last year at a cost of around US$600,000 and is operated by eighteen staff, who monitor the county’s road network. If an accident occurs, traffic signals can be adjusted and messages displayed in a bid to redirect traffic ease congestion. Mainte
  • Less travel aggravation to blunt Aggieland fans’ motivation
    June 17, 2016
    Returning travel times to normal within two hours of the end of a major football game was the challenge facing College Station, Adam Lyons explains how this was achieved. College Station, TX, also known as ‘Aggieland’, is located right in the middle of the Dallas/Fort Worth, San Antonio and Houston triangle making the city accessible to over 14 million Texans within less than a four-hour drive. One of the biggest draws to this area is Texas A&M University (TAMU) and the Aggie football games in the fall, mea
  • Cloud keeps UK traffic on the move
    November 23, 2021
    Sopra Steria is introducing the new digital infrastructure for National Highways' NTIS
  • Estimating winter road recovery time with traffic data
    February 15, 2013
    In Minnesota, US, the most common measure for snow management performance is the time it takes to completely clear a roadway after a snow event ends. Currently, the Minnesota Department of Transportation (MnDOT) relies on visual inspections by its field crews to estimate this bare pavement recovery time. To help MnDOT more accurately and reliably estimate the performance of its snow management activities, researchers from the University of Minnesota Duluth (UMD) have developed a prototype process that uses