Skip to main content

IBM and City of Lyon collaborate to create transport management centre of the future

IBM researchers are piloting a system with the City of Lyon, France which will be used to help traffic operators in its transportation management centre to evaluate an incident and make more informed assessments about which actions would restore traffic flow. Using real-time traffic data, the new analytics and optimisation technology can help officials predict outcomes and analyse ways to resolve problems. The researchers say that, although traffic management centres have sophisticated video walls and colou
November 15, 2012 Read time: 3 mins
62 IBM researchers are piloting a system with the City of Lyon, France which will be used to help traffic operators in its transportation management centre to evaluate an incident and make more informed assessments about which actions would restore traffic flow. Using real-time traffic data, the new analytics and optimisation technology can help officials predict outcomes and analyse ways to resolve problems.

The researchers say that, although traffic management centres have sophisticated video walls and colour maps of real-time traffic that can integrate different streams of traffic data, these do not provide full situational awareness across the transportation network. Today, command centre officials use predefined response plans or make decisions on the fly. Neither method allows traffic operators to factor current and future traffic patterns into their decision-making process.

Using software from IBM, actionable historical and real-time traffic data from the City of Lyon is combined with advanced analytics and algorithms to help model predicted conditions under both normal and incident conditions, and the resulting impact across the entire network of roads, buses and trams. The system can also be used to estimate drive times and traffic patterns in a region more accurately and in real-time.

The new predictive traffic management technology, Decision Support System Optimiser (DSSO), combines incident detection, incident impact prediction and propagation, traffic prediction and control plan optimisation.  It also uses the IBM data expansion algorithm, which can estimate traffic data that it is not available from sensors using descriptive flow models in conjunction with the available real-time traffic data. The new technology is compatible with the IBM Intelligent Operation Centre’s Intelligent Transportation solution.

Over time, the algorithms will ‘learn’ to fine-tune future recommendations by incorporating best practices and outcomes from successful plans. The command centre can develop traffic contingency plans for major events such as large sporting events or concerts.
"As the city of Lyon strives to improve mobility for its citizens and become a leader in sustainable transportation, piloting this analytics technology will help the city anticipate and avoid many traffic jams before they happen and lessen their impact on citizens," said Gerard Collomb, Senator Mayor of Lyon. “Using the data that we are collecting to make more informed decisions will help us to resolve unexpected traffic events and optimise public transportation that is becoming a credible alternative to the use of private cars."

“Today transportation departments often capture real-time traffic data, but there is no effective way to manage and find actionable insight to act upon instantaneously for the immediate benefit of the traveller,” said Sylvie Spalmacin-Roma, vice president, Smarter Cities Europe, IBM. “With the City of Lyon, we will demonstrate how the transportation management centre of the future will use analytics to improve the decision-making process, improve first responder time and get citizens moving more efficiently by better managing traffic.”

For more information on companies in this article

Related Content

  • Countering congestion’s cost
    May 6, 2015
    A new report on the economic costs of traffic congestion predicts the problem will worsen significantly in future. Jon Masters reviews the figures and some suggested solutions. New figures on the rising economic and environmental costs of congestion have been published by the US traffic data specialist Inrix and the UK’s Centre for Economics & Business Research (Cebr). Their report finds the problem much bigger than previously thought.
  • Trust AI – it knows more than we do
    January 14, 2020
    There’s no shortage of data – but making the most of it is the problem. Andrew Bunn examines how AI will be able to support and influence the development of advanced transportation strategies
  • Estimating winter road recovery time with traffic data
    February 15, 2013
    In Minnesota, US, the most common measure for snow management performance is the time it takes to completely clear a roadway after a snow event ends. Currently, the Minnesota Department of Transportation (MnDOT) relies on visual inspections by its field crews to estimate this bare pavement recovery time. To help MnDOT more accurately and reliably estimate the performance of its snow management activities, researchers from the University of Minnesota Duluth (UMD) have developed a prototype process that uses
  • Moscow models traffic conditions in real-time
    February 26, 2015
    Moscow, which has to contend with heavy congestion on its arterial and ring roads during rush hour, relies heavily on its newly-implemented intelligent transportation system (ITS). At the heart of the system is PTV Group’s model-based PTV Optima, which delivers accurate traffic information in real-time and enables dynamic forecasting for a timescale of 60 minutes. PTV Optima collects, compares, validates and combines data from multiple sources to produce a coherent and detailed traffic picture. Using a comb