Skip to main content

Grab and NUS set up AI lab in Singapore to make cities smarter

Technology company Grab and the National University of Singapore (NUS) has set up an artificial intelligence (AI) lab to help develop smarter cities in South-east Asia. The partnership intends to solve challenges such as congestion and the liveability of cities in the region. The Grab-NUS AI Lab, part of an initial joint investment of S$6m (£3.3m), will utilise data from the Grab platform to provide insights into how citizens move across cities. It will also be used to map out traffic patterns and ident
July 20, 2018 Read time: 2 mins
Technology company Grab and the National University of Singapore (NUS) has set up an artificial intelligence (AI) lab to help develop smarter cities in South-east Asia. The partnership intends to solve challenges such as congestion and the liveability of cities in the region.


The Grab-NUS AI Lab, part of an initial joint investment of S$6m (£3.3m), will utilise data from the Grab platform to provide insights into how citizens move across cities. It will also be used to map out traffic patterns and identify ways to impact mobility directly.

Initially, the companies will work together to improve the efficiency and reliability of transport on the Grab platform. Researchers at the laboratory will create an AI platform for machine learning and visual analytics to help develop applications from Grab’s data set.

Additionally, the team will develop algorithms to provide passengers with smart services based on insights into their needs and to improve accuracy when mapping pick-up points. The technology is also expected to detect traffic events and anomalies in real time and improve urban traffic flow.

Anthony Tan, Grab co-founder, says data from the platform shows how travel time from the region of Newton to the Tanjong Pagar district can be improved.

“If this route would be better served by more shared transport solutions, such as buses, trains, GrabShuttle, GrabShare or GrabHitch, we could bring travel time during peak hour down by one third or from 40 to 28 minutes,” Tan adds.

UTC

Related Content

  • March 31, 2021
    Digital Transformation is the way to comprehensive transportation 
    Transportation worldwide needs to keep up with a variety of challenges: Frederic Giron of Forrester Consulting explains how digital technologies will be the key to making the necessary changes...
  • June 20, 2022
    Using thermal tech to monitor traffic
    A project in Paris has given Hikvision the chance to cut out the glare
  • May 18, 2018
    New ANPR solutions overcome variables
    The sheer range of variables makes it difficult to find a single algorithm to ensure a 100% standard of ANPR. David Crawford investigates new processing technology. Automatic number plate recognition (ANPR), using optical character recognition and image-processing to identify vehicles, plays key roles in traffic monitoring and law enforcement, access and parking control, electronic toll collection, vehicle security and crime deterrence. Overall, system performance is well rated, with high levels of
  • November 15, 2013
    Maintaining momentum: learning lessons from the London Olympics
    Japan will not only host this year’s ITS World Congress but has been selected for the 2020 Olympics. So what can Japan, and indeed Brazil, learn from the traffic management for London 2012 - Geoff Hadwick finds out. It was a key moment when Olympic boss Jacques Rogge signed off London 2012, calling the Games “happy and glorious.” Scarred by the logistical disaster of Atlanta 1996 and the last-minute building panic for Athens 2008, Rogge clearly thought London 2012 was an object lesson in how to plan and