Skip to main content

Georgia gets SCOOT

Siemens has won a new SCOOT (Split Cycle Offset Optimisation Technique) project in the US State of Georgia, in an area to the north of Atlanta along State Route 9. In the first phase, SCOOT will control thirty-three intersections in the towns of Alpharetta, Roswell and Sandy Springs and it is expected that more intersections will be added to the system over the next few years. The project is being managed by Siemens USA with local dealer Temple.
May 9, 2013 Read time: 2 mins
189 Siemens has won a new SCOOT (Split Cycle Offset Optimisation Technique) project in the US State of Georgia, in an area to the north of Atlanta along State Route 9. In the first phase, SCOOT will control thirty-three intersections in the towns of Alpharetta, Roswell and Sandy Springs and it is expected that more intersections will be added to the system over the next few years.

The project is being managed by 121 Siemens USA with local dealer 580 Temple.

Following testing of a demonstration system by 754 Georgia Department of Transportation which highlighted the benefits of adaptive control and after comparison with a leading system, it was determined that SCOOT would be an excellent long term solution.

Further analysis by 831 Federal Highway Administration (FHWA), concluded that, of SCOOT’s many desirable features, the one of particular importance was the ability to run the system with ordinary traffic plans but to also have the capability to invoke SCOOT when desired.  

It was determined that with the Siemens configuration, the clients could continue to run standard traffic patterns using the Siemens TACTICS traffic management system.  However, when requested, the SCOOT system can activate a full adaptive system which can be turned on and off by the SCOOT system scheduler.

Roadside implementation has already begun and the full SCOOT implementation is expected to be completed by the end of the summer.

A tender has also been released to expand the system with an additional thirty-four intersections before the initial deployment has been completed.  The initial deployment will be for 33 intersections.

Related Content

  • Sensor solutions cuts maintenance and emissions
    December 8, 2014
    The new raft of sensor technology can provide cost savings as well as additional functionality, as David Crawford discovers. Austria’s third-largest city, Linz, with a population of around 200,000, is recording substantial savings in its urban tram network within 18 months of introducing a new, high-technology approach to its public transport management. Tram, bus and trolleybus operator Linz Linien forms part of city utilities management company Linz AG, which has been carrying out a wide-ranging Smart Cit
  • TRL: Cities must do more to help VRUs
    May 9, 2019
    UK cities must learn from the Netherlands and Denmark if active travel and increased safety for vulnerable road users are to co-exist, says TRL’s Marcus Jones Active travel’ refers to modes of transport in which physical effort is required to undertake purposeful journeys - for example, walking or cycling to school, work or the local shops, as well as walking and standing as part of accessing public transport. The benefits of replacing short car journeys with more active forms of transport are obvious. Act
  • ISO standard aids interoperability and data security
    March 30, 2017
    Star Systems International’s Stephen Lockhart, explains how ISO 18000-6C can boost both interoperability and data security in RFID tolling applications. As more states, municipalities and agencies deploy electronic tolling solutions to generate funds and reduce congestion at tollbooths, there have been increased calls for standardisation in the industry.
  • Cost Benefit: a roundabout way of lighting
    October 20, 2022
    One of Europe’s first smart lighting systems specifically for roundabouts is operating in Hungary and making big energy savings for local government, explains Miklós Muranyi of NIF