Skip to main content

Georgia gets SCOOT

Siemens has won a new SCOOT (Split Cycle Offset Optimisation Technique) project in the US State of Georgia, in an area to the north of Atlanta along State Route 9. In the first phase, SCOOT will control thirty-three intersections in the towns of Alpharetta, Roswell and Sandy Springs and it is expected that more intersections will be added to the system over the next few years. The project is being managed by Siemens USA with local dealer Temple.
May 9, 2013 Read time: 2 mins
189 Siemens has won a new SCOOT (Split Cycle Offset Optimisation Technique) project in the US State of Georgia, in an area to the north of Atlanta along State Route 9. In the first phase, SCOOT will control thirty-three intersections in the towns of Alpharetta, Roswell and Sandy Springs and it is expected that more intersections will be added to the system over the next few years.

The project is being managed by 121 Siemens USA with local dealer 580 Temple.

Following testing of a demonstration system by 754 Georgia Department of Transportation which highlighted the benefits of adaptive control and after comparison with a leading system, it was determined that SCOOT would be an excellent long term solution.

Further analysis by 831 Federal Highway Administration (FHWA), concluded that, of SCOOT’s many desirable features, the one of particular importance was the ability to run the system with ordinary traffic plans but to also have the capability to invoke SCOOT when desired.  

It was determined that with the Siemens configuration, the clients could continue to run standard traffic patterns using the Siemens TACTICS traffic management system.  However, when requested, the SCOOT system can activate a full adaptive system which can be turned on and off by the SCOOT system scheduler.

Roadside implementation has already begun and the full SCOOT implementation is expected to be completed by the end of the summer.

A tender has also been released to expand the system with an additional thirty-four intersections before the initial deployment has been completed.  The initial deployment will be for 33 intersections.

Related Content

  • New Hampshire plans for tomorrow’s communication
    August 21, 2017
    Someone once likened predicting the future to ‘nailing a jelly to the wall’. With ITS, C-ITS and V2X technology progressing at such a pace, predicting the future is more akin to trying to nail three jellies to the wall – but only having one nail. And yet with roadways having a lifetime measured in decades, that is exactly what highway engineers and traffic planners are expected to do. Fortunately, New Hampshire DoT (NHDoT) believes its technological advances may be able to provide a solution. The Central Ne
  • A streetcar named...reliable
    June 27, 2018
    When Atlanta’s streetcar project had some issues, Siemens helped to solve them – but started out by just listening, says Chris Maynard, the company’s head of rail services. It’s funny how often niggling problems can be a warning sign that there are bigger issues requiring attention – and not so funny how things can escalate if you don’t pay attention to them. With that in mind, Siemens was hired as service provider for the Atlanta Streetcar system - four vehicles operating on a two-mile loop in downtown
  • ITS technology reduces congestion, improves workzone safety
    July 17, 2012
    As the road-building season gets under way in the US, the Federal Highway Administration has just published a White Paper which deals with the use of ITS technology in work zones. On 30 April 2009, the US Federal Highway Administration (FHWA) published a White Paper which was prepared by the US Department of Transportation (USDOT) to inform public agencies about the use of ITS to manage construction work zones. This is a particularly relevant topic given the large number of construction projects that are ex
  • Thales builds on Canadian connection for transit R&D
    June 20, 2016
    The Canadian province of Ontario is continuing to benefit from its ongoing investment in transit R&D. David Crawford looks at the impact of new investment. Developing the next generation of urban rail signalling solutions worldwide, with the emphasis on transit security and efficiency, is the goal of a recently-created business partnership between the government of the Canadian province of Ontario and Thales Canada. The wholly-owned subsidiary of the France-HQ'd global defence, aerospace and transportation