Skip to main content

Georgia gets SCOOT

Siemens has won a new SCOOT (Split Cycle Offset Optimisation Technique) project in the US State of Georgia, in an area to the north of Atlanta along State Route 9. In the first phase, SCOOT will control thirty-three intersections in the towns of Alpharetta, Roswell and Sandy Springs and it is expected that more intersections will be added to the system over the next few years. The project is being managed by Siemens USA with local dealer Temple.
May 9, 2013 Read time: 2 mins
189 Siemens has won a new SCOOT (Split Cycle Offset Optimisation Technique) project in the US State of Georgia, in an area to the north of Atlanta along State Route 9. In the first phase, SCOOT will control thirty-three intersections in the towns of Alpharetta, Roswell and Sandy Springs and it is expected that more intersections will be added to the system over the next few years.

The project is being managed by 121 Siemens USA with local dealer 580 Temple.

Following testing of a demonstration system by 754 Georgia Department of Transportation which highlighted the benefits of adaptive control and after comparison with a leading system, it was determined that SCOOT would be an excellent long term solution.

Further analysis by 831 Federal Highway Administration (FHWA), concluded that, of SCOOT’s many desirable features, the one of particular importance was the ability to run the system with ordinary traffic plans but to also have the capability to invoke SCOOT when desired.  

It was determined that with the Siemens configuration, the clients could continue to run standard traffic patterns using the Siemens TACTICS traffic management system.  However, when requested, the SCOOT system can activate a full adaptive system which can be turned on and off by the SCOOT system scheduler.

Roadside implementation has already begun and the full SCOOT implementation is expected to be completed by the end of the summer.

A tender has also been released to expand the system with an additional thirty-four intersections before the initial deployment has been completed.  The initial deployment will be for 33 intersections.

Related Content

  • IRD polishes WiM’s green credentials
    December 21, 2020
    A project in Canada is proving that Weigh in Motion can have a positive environmental impact, by helping to reduce emissions. Adam Hill looks at International Road Dynamics’ numbers
  • Big data and GPS combine to cut emergency response times
    April 2, 2014
    David Crawford looks at technologies for better emergency medical service delivery. Emergency medical services (EMS) play key roles in transporting, or bringing treatment to, patients who become ill through medical emergencies or are injured in road traffic accidents (RTAs). But awareness has been rising steadily, in the US and elsewhere, of the extent to which EMS can generate their own emergencies. The most common cause is vehicles causing or becoming involved in RTAs, as a result of driving fast under pr
  • Pricing practise for HOT lane operation
    May 11, 2017
    Timothy Compston weighs up the critical elements that keep the wheels of dynamic pricing schemes turning in today's high-occupancy toll (HOT) lanes. In the drive towards smarter tolling it is perhaps not surprising that sophisticated pricing algorithms are being rolled out to better reflect supply and demand on the roadway. This is the case with high-occupancy toll (HOT) lanes which a growing number of DoTs are seeing as a way of smoothing the operation of their existing, and planned, freeway infrastructure
  • New Volvo challenges connected car thinking
    September 8, 2014
    In America, the introduction of the Wi-Fi Innovation Act has sees the debate over the future of the 5.9GHz band and the potential to open it up to non-licenced users, enter a new phase. Amid the claim and counter-claim of the opposing camps, the launch of Volvo’s new XC90 is easily overlooked and while a connection between the two is not immediately apparent, the new all-wheel drive SUV could be a game-changer.