Skip to main content

Georgia gets SCOOT

Siemens has won a new SCOOT (Split Cycle Offset Optimisation Technique) project in the US State of Georgia, in an area to the north of Atlanta along State Route 9. In the first phase, SCOOT will control thirty-three intersections in the towns of Alpharetta, Roswell and Sandy Springs and it is expected that more intersections will be added to the system over the next few years. The project is being managed by Siemens USA with local dealer Temple.
May 9, 2013 Read time: 2 mins
189 Siemens has won a new SCOOT (Split Cycle Offset Optimisation Technique) project in the US State of Georgia, in an area to the north of Atlanta along State Route 9. In the first phase, SCOOT will control thirty-three intersections in the towns of Alpharetta, Roswell and Sandy Springs and it is expected that more intersections will be added to the system over the next few years.

The project is being managed by 121 Siemens USA with local dealer 580 Temple.

Following testing of a demonstration system by 754 Georgia Department of Transportation which highlighted the benefits of adaptive control and after comparison with a leading system, it was determined that SCOOT would be an excellent long term solution.

Further analysis by 831 Federal Highway Administration (FHWA), concluded that, of SCOOT’s many desirable features, the one of particular importance was the ability to run the system with ordinary traffic plans but to also have the capability to invoke SCOOT when desired.  

It was determined that with the Siemens configuration, the clients could continue to run standard traffic patterns using the Siemens TACTICS traffic management system.  However, when requested, the SCOOT system can activate a full adaptive system which can be turned on and off by the SCOOT system scheduler.

Roadside implementation has already begun and the full SCOOT implementation is expected to be completed by the end of the summer.

A tender has also been released to expand the system with an additional thirty-four intersections before the initial deployment has been completed.  The initial deployment will be for 33 intersections.

Related Content

  • Gothenburg’s year of congestion charging
    April 9, 2014
    A year after it went live, Colin Sowman examines the technology used for Gothenburg’s congestion charging system and the effect the scheme has had on commuters. When it comes to long-term planning, the Scandinavians take some beating.The West Swedish Agreement is a case in point. Introduced in 2009, the Agreement runs through to around 2027 and aims to create an attractive, sustainable and growing region, and over that timescale the number of journeys is expected to increase by a third. Therefore the Agreem
  • The case for SCATS
    May 1, 2012
    Growth in urban areas continues to stress roadway networks across the country. Local, state and federal transportation authorities turn to ITS systems to solve these problems and more efficiently utilize their current roadway. By deploying adaptive signal control systems, cities remove choke points and adjust in real time to varying traffic patterns, particularly during special events or accidents. Ultimately, this reduces vehicle emissions, motorist fuel consumption, and travel times, while improving quali
  • Connected citizens boosts Boston’s traffic management
    March 30, 2017
    Data-derived traffic management is starting to show benefits as David Crawford discovers. The city of Boston has been facing growing congestion problems in its Seaport regeneration district, with the rate of commercial and residential growth threatening to overtake the capacity of the road network to respond.
  • Cooperative infrastructure an aid to environmental aims
    February 3, 2012
    Speculate to accumulate Andras Kovacs looks at how the historical focus of cooperative infrastructure on safety can be oriented to aid emerging environmental aims