Skip to main content

First-of-a-kind collaboration to analyse real-time traffic patterns and individual commuter travel history

IBM has announced a new collaboration with the California Department of Transportation (Caltrans) and California Center for Innovative Transportation (CCIT), a research institute at the University of California, Berkeley, to develop an intelligent transportation solution that will help commuters avoid congestion and enable transportation agencies to better understand, predict and manage traffic flow.
February 3, 2012 Read time: 3 mins

62 IBM has announced a new collaboration with the 923 California Department of Transportation (Caltrans) and 2175 California Center for Innovative Transportation (CCIT), a research institute at the 2176 University of California, Berkeley, to develop an intelligent transportation solution that will help commuters avoid congestion and enable transportation agencies to better understand, predict and manage traffic flow.

In a technology advance it is claimed will ultimately help drivers around the world avoid rush hour traffic jams, IBM Research has developed a new predictive modelling tool that will allow drivers to quickly access personalised travel recommendations to help them avoid congestion, and save time and fuel.

By joining forces, IBM, Caltrans and the Mobile Millennium team within CCIT hope to provide drivers with valuable predictive information on what traffic patterns are likely to look like – even before they leave work or home and get in their vehicles – rather than discover what has already happened and is being reported.

“As the number of cars and drivers in the Bay Area continue to grow, so too has road traffic. However, it’s unrealistic to think we can solve this congestion problem simply by adding more lanes to roadways, so we need to proactively address these problems before they pile up,” said Greg Larson, chief of the office of traffic operations research, Caltrans. “Together with partners like CCIT and IBM we’re driving a new age of science-based, data-centric traffic management that will give commuters the benefit of knowing the fastest, most cost-effective and eco-friendly route to their destination.”

The researchers will leverage a first-of-its-kind learning and predictive analytics tool called the IBM Traffic Prediction Tool (TPT), developed by IBM Research, which continuously analyses congestion data, commuter locations and expected travel start times throughout a metropolitan region that can affect commuters on highways, rail-lines and urban roads. Through this Smarter Traveller Research Initiative, it is claimed that scientists could eventually recommend better ways to get to a destination, including directions to a nearby mass transit station, whether a train is predicted to be on time and whether parking is predicted to be available at the station.

“In order for intelligent transportation systems to be truly effective, travellers need information they can act upon before getting stuck in traffic,” said Stefan Nusser, functional manager, Almaden Services Research, IBM. “By actively capturing and analysing the massive amount of data already being collected, we’re blending the automated learning of travel routes with state-of-the-art traffic prediction of those routes to create useful information that focuses on providing timely, actionable information to the traveller.”

Related Content

  • First among equals
    May 21, 2012
    Dr Peter Sweatman, Director of the University of Michigan Transportation Research Institute (UMTRI) and the new chairman of ITS America, has no doubt where safety stands in the ITS world What do you hope to achieve in your term as chairman of ITS America? I really want to advance the agenda of safe and sustainable transportation because ITS really is the only weapon that can advance that. We have been working on connected vehicles for safety for a number of years, putting all of the right elements in place,
  • Jeff Price, Cubic: 'You have to embrace complexity, whilst trying to tame it'
    April 27, 2023
    Jeff Price, from Cubic Transportation Systems, explains why the ITS sector needs to put humans at the heart of innovation – and how making things simple is often difficult to do
  • Wireless traffic data in real time
    January 31, 2012
    The effect of moving objects on the electromagnetic landscape set up by cellular telephony networks can be detected and interpreted to give real-time traffic data across large geographical areas at low cost. Here, we revisit the Celldar concept. Global economic downturn has pushed public-sector agencies, transport administrations among them, to push even harder for cost efficiencies. Unfortunately, when it comes to transport safety and efficiency the public sector often has to work up to a cost rather than
  • Fara keeps data delivery simple
    January 25, 2018
    Simplifying the delivery of data and information gathered by traffic management, ticketing and other systems can improve travel efficiency and the traveller’s experience. Having quantified and analysed the previously unmonitored movement of road vehicles, trains, metros, cyclists and pedestrians, the ITS sector is a prime example of the digital world. Patterns discerned from those previously random happenings enable authorities to design more efficient transport systems, allow transport operators to run