Skip to main content

First-of-a-kind collaboration to analyse real-time traffic patterns and individual commuter travel history

IBM has announced a new collaboration with the California Department of Transportation (Caltrans) and California Center for Innovative Transportation (CCIT), a research institute at the University of California, Berkeley, to develop an intelligent transportation solution that will help commuters avoid congestion and enable transportation agencies to better understand, predict and manage traffic flow.
February 3, 2012 Read time: 3 mins

62 IBM has announced a new collaboration with the 923 California Department of Transportation (Caltrans) and 2175 California Center for Innovative Transportation (CCIT), a research institute at the 2176 University of California, Berkeley, to develop an intelligent transportation solution that will help commuters avoid congestion and enable transportation agencies to better understand, predict and manage traffic flow.

In a technology advance it is claimed will ultimately help drivers around the world avoid rush hour traffic jams, IBM Research has developed a new predictive modelling tool that will allow drivers to quickly access personalised travel recommendations to help them avoid congestion, and save time and fuel.

By joining forces, IBM, Caltrans and the Mobile Millennium team within CCIT hope to provide drivers with valuable predictive information on what traffic patterns are likely to look like – even before they leave work or home and get in their vehicles – rather than discover what has already happened and is being reported.

“As the number of cars and drivers in the Bay Area continue to grow, so too has road traffic. However, it’s unrealistic to think we can solve this congestion problem simply by adding more lanes to roadways, so we need to proactively address these problems before they pile up,” said Greg Larson, chief of the office of traffic operations research, Caltrans. “Together with partners like CCIT and IBM we’re driving a new age of science-based, data-centric traffic management that will give commuters the benefit of knowing the fastest, most cost-effective and eco-friendly route to their destination.”

The researchers will leverage a first-of-its-kind learning and predictive analytics tool called the IBM Traffic Prediction Tool (TPT), developed by IBM Research, which continuously analyses congestion data, commuter locations and expected travel start times throughout a metropolitan region that can affect commuters on highways, rail-lines and urban roads. Through this Smarter Traveller Research Initiative, it is claimed that scientists could eventually recommend better ways to get to a destination, including directions to a nearby mass transit station, whether a train is predicted to be on time and whether parking is predicted to be available at the station.

“In order for intelligent transportation systems to be truly effective, travellers need information they can act upon before getting stuck in traffic,” said Stefan Nusser, functional manager, Almaden Services Research, IBM. “By actively capturing and analysing the massive amount of data already being collected, we’re blending the automated learning of travel routes with state-of-the-art traffic prediction of those routes to create useful information that focuses on providing timely, actionable information to the traveller.”

Related Content

  • Sensor detects pothole hazards in real time
    June 15, 2015
    An innovative ‘pothole alert’ research project could potentially save motorists billions of pounds in punctures, vehicle damage and road accidents every year, say researchers. Jaguar Land Rover is researching a new connected car technology that will allow a vehicle to identify the location and severity of potholes, broken drains and manhole covers, and then share this data in real-time via the cloud with other vehicles and with road authorities to help them prioritise repairs.
  • UK drivers get real time traffic information boost
    August 9, 2012
    The UK Highways Agency is trialling a system to add commercially available traffic data to its existing sources to monitor how well traffic is flowing on England's motorways and strategic roads. Similar data sources are already used by satellite navigation devices, smartphones, and applications like Google maps. Better real-time data will allow agency staff to respond more quickly to incidents and identify delays and communicate them to drivers so they can take alternative routes if necessary.
  • Via boosts transit options in Miami-Dade
    October 29, 2020
    Each vehicle accepts three passengers to maintain social distancing
  • USDoT looks at the costs and potential benefits of connected vehicles
    October 26, 2017
    David Crawford looks at latest lessons learned from the trials of connected vehicles in the US. The progress of connected vehicle (CV) technologies takes centre stage among the hot topics highlighted in the September 2017 edition – the first since 2014 – of the ‘ITS Benefits, Costs and Lessons Learned’ survey from the US ITS Joint Program Office (JPO). The organisation is an arm of the US Department of Transportation (USDoT).