Skip to main content

First-of-a-kind collaboration to analyse real-time traffic patterns and individual commuter travel history

IBM has announced a new collaboration with the California Department of Transportation (Caltrans) and California Center for Innovative Transportation (CCIT), a research institute at the University of California, Berkeley, to develop an intelligent transportation solution that will help commuters avoid congestion and enable transportation agencies to better understand, predict and manage traffic flow.
February 3, 2012 Read time: 3 mins

62 IBM has announced a new collaboration with the 923 California Department of Transportation (Caltrans) and 2175 California Center for Innovative Transportation (CCIT), a research institute at the 2176 University of California, Berkeley, to develop an intelligent transportation solution that will help commuters avoid congestion and enable transportation agencies to better understand, predict and manage traffic flow.

In a technology advance it is claimed will ultimately help drivers around the world avoid rush hour traffic jams, IBM Research has developed a new predictive modelling tool that will allow drivers to quickly access personalised travel recommendations to help them avoid congestion, and save time and fuel.

By joining forces, IBM, Caltrans and the Mobile Millennium team within CCIT hope to provide drivers with valuable predictive information on what traffic patterns are likely to look like – even before they leave work or home and get in their vehicles – rather than discover what has already happened and is being reported.

“As the number of cars and drivers in the Bay Area continue to grow, so too has road traffic. However, it’s unrealistic to think we can solve this congestion problem simply by adding more lanes to roadways, so we need to proactively address these problems before they pile up,” said Greg Larson, chief of the office of traffic operations research, Caltrans. “Together with partners like CCIT and IBM we’re driving a new age of science-based, data-centric traffic management that will give commuters the benefit of knowing the fastest, most cost-effective and eco-friendly route to their destination.”

The researchers will leverage a first-of-its-kind learning and predictive analytics tool called the IBM Traffic Prediction Tool (TPT), developed by IBM Research, which continuously analyses congestion data, commuter locations and expected travel start times throughout a metropolitan region that can affect commuters on highways, rail-lines and urban roads. Through this Smarter Traveller Research Initiative, it is claimed that scientists could eventually recommend better ways to get to a destination, including directions to a nearby mass transit station, whether a train is predicted to be on time and whether parking is predicted to be available at the station.

“In order for intelligent transportation systems to be truly effective, travellers need information they can act upon before getting stuck in traffic,” said Stefan Nusser, functional manager, Almaden Services Research, IBM. “By actively capturing and analysing the massive amount of data already being collected, we’re blending the automated learning of travel routes with state-of-the-art traffic prediction of those routes to create useful information that focuses on providing timely, actionable information to the traveller.”

Related Content

  • Lyft boss: ‘There has to be another way of doing things’ 
    February 14, 2020
    Adding roads and vehicles is not enough to improve mobility, according to Raj Kapoor, chief strategy officer and head of business at Lyft.
  • The benefit of Lidar: touch, don’t look
    September 28, 2020
    The benefits of Lidar as a safety device for automobiles rather than as an enabler for AVs are easy to overlook – but Dr Jun Pei of Cepton Technologies tells Adam Hill why that would be a big mistake
  • Communication: the future of machine vision
    May 30, 2013
    Jason Barnes asks leading machine vision industry figures what they consider to be the educational barriers to the technology’s increased uptake by the ITS sector. The recent rush by some organisations within the ITS sector to associate themselves with the term ‘machine vision’ underlines just how important the technology has become in a relatively short space of time. However, despite the technology having been applied in certain traffic management applications for some years, there remains a significant s
  • Smart parking for a smarter city says Beecham Research
    March 28, 2014
    Smart Parking could relieve congestion, reduce driver frustration, improve health and give a vital boost to the future of our cities, says Dr Therese Cory, the principal author of a new report from Beecham Research. Cities are centres for business, government and culture, attracting high volumes of workers and visitors. But today, the use of modern communications and information technology is enabling City authorities to explore new ways to make their cities work better. The Beecham report examines a nu