Skip to main content

Federal Highway Administration showcases truck platooning technology

The US Federal Highway Administration (FHWA) has conducted the first of a two-day demonstration of three-truck platoons on I-66 in Virginia. The results of a four-year research project to test the effectiveness of state-of-the-art driving and communications technologies were showcased at the event. Truck platooning uses vehicle-to-vehicle communications technology to allow trucks to follow each other more closely – at about one second apart – and travel in a more coordinated fashion.
September 15, 2017 Read time: 2 mins
The US Federal Highway Administration (FHWA) has conducted the first of a two-day demonstration of three-truck platoons on I-66 in Virginia. The results of a four-year research project to test the effectiveness of state-of-the-art driving and communications technologies were showcased at the event.


Truck platooning uses vehicle-to-vehicle communications technology to allow trucks to follow each other more closely – at about one second apart – and travel in a more coordinated fashion.

While various aspects of truck platooning have been studied for years, FHWA’s Exploratory Advance Research program has taken testing to new levels with the addition of cooperative adaptive cruise control (CACC) technology, which adds vehicle-to-vehicle communications to the adaptive cruise control capability now available in new vehicles. This connectivity allows trucks to operate more smoothly as a unit, reducing and controlling the gaps between vehicles.

The demonstration involved partially automated trucks – which are not driverless, and used professional drivers. The advanced technology that makes platooning possible is meant to supplement, not replace, the nation’s commercial motor vehicle operators.

Related Content

  • Volvo initiates cloud-based road warning system
    March 21, 2014
    Volvo Car Group (Volvo Cars), the Swedish Transport Administration (Trafikverket) and the Norwegian Public Roads Administration (Statens Vegvesen) are joining forces in a pilot project in which road friction information from individual cars is shared within a cloud-based system. The pilot uses 50 Volvo cars; when the test car detects an icy or slippery patch of road, the information is transmitted to Volvo Cars’ database via the mobile phone network. An instant warning is transmitted to other vehicles ap
  • Detection analysis technology successfully predicts traffic flows
    February 3, 2012
    David Crawford investigates new detection analysis technology from IBM. Locations on both the East and West Coasts of the US are scheduled for early deployments of IBM's new Traffic Prediction Tool (TPT) statistical analysis model for the fine-time resolution and near-term prediction of road flow conditions. Developed by IBM's Watson Research Laboratories, TPT is designed to analyse data from the the key detection indicators - average vehicle volumes and speeds passing a location in a given time interval -
  • European communicating cars test drive concludes
    November 21, 2014
    The European communicating cars test drive along the Cooperative ITS (Intelligent Transport Systems) Corridor spanning Austria, Germany and the Netherlands has reached its final destination in the Netherlands. Initiated by NXP Semiconductors, the test drive also included Siemens, Honda, Cohda Wireless, TÜV Süd and automobile clubs AvD and ANWB. The ITS showcase ended in Helmond following a week-long tour which began at the Electronica electronics trade show in Munich. The event saw a convoy of five Ho
  • Weigh in Motion gets smarter
    January 4, 2023
    Weigh in Motion technology is at the forefront of protecting road surfaces and helping enforcement activity – but could it also play a key role in the development of Smart Cities?