Skip to main content

Federal Highway Administration showcases truck platooning technology

The US Federal Highway Administration (FHWA) has conducted the first of a two-day demonstration of three-truck platoons on I-66 in Virginia. The results of a four-year research project to test the effectiveness of state-of-the-art driving and communications technologies were showcased at the event. Truck platooning uses vehicle-to-vehicle communications technology to allow trucks to follow each other more closely – at about one second apart – and travel in a more coordinated fashion.
September 15, 2017 Read time: 2 mins
The US Federal Highway Administration (FHWA) has conducted the first of a two-day demonstration of three-truck platoons on I-66 in Virginia. The results of a four-year research project to test the effectiveness of state-of-the-art driving and communications technologies were showcased at the event.


Truck platooning uses vehicle-to-vehicle communications technology to allow trucks to follow each other more closely – at about one second apart – and travel in a more coordinated fashion.

While various aspects of truck platooning have been studied for years, FHWA’s Exploratory Advance Research program has taken testing to new levels with the addition of cooperative adaptive cruise control (CACC) technology, which adds vehicle-to-vehicle communications to the adaptive cruise control capability now available in new vehicles. This connectivity allows trucks to operate more smoothly as a unit, reducing and controlling the gaps between vehicles.

The demonstration involved partially automated trucks – which are not driverless, and used professional drivers. The advanced technology that makes platooning possible is meant to supplement, not replace, the nation’s commercial motor vehicle operators.

Related Content

  • TransCore wins Scats deployment contract
    April 27, 2012
    TransCore has been selected by Cobb County Department of Transportation, Atlanta, to expand its Scats (Sydney Coordinated Adaptive Traffic System) adaptive traffic signal control technology with an additional 75 intersections, nearly doubling its use of the technology and making it the second largest deployment in the United States. The first phase of 26 intersections in the town centre area are now in operation with the remaining intersections expected to be fully operational by October 2012.
  • Is Europe's Galileo project value for money?
    February 2, 2012
    Philippe Hamet discusses the progress of the European Union's Galileo Global Navigation Satellite System Project
  • WSDOT installs LED lights on Highway 101
    March 1, 2013
    Washington State Department of Transportation (WSDOT) has replaced the old high-pressure-sodium (HPS) lighting system along Highway 101 with the state’s first light-emitting-diode (LED) lighting system. “This is the first time we’ve used LED lights on a state highways and for most drivers, it will be quite a change,” said John Nisbet, WSDOT state traffic engineer. “LED lights appear whiter and brighter than our standard lights. And those who travel the area late at night will see some lights dimmed or shut
  • New constellation will add accuracy and security to GNSS services
    December 20, 2013
    With Galileo’s early services scheduled to start next year, Fiammetta Diani is enthusiastic about the opportunities the EU’s GNSS system will offer. Next year will be a very exciting one for Galileo, the EU’s fledgling satellite constellation; additional satellites are scheduled for launch and, as European Commission Vice President Tajani recently announced, early operational services will be starting towards the end of 2014. So it really is ‘all systems go’ as Fiammetta Diani, market development officer in