Skip to main content

Federal Highway Administration showcases truck platooning technology

The US Federal Highway Administration (FHWA) has conducted the first of a two-day demonstration of three-truck platoons on I-66 in Virginia. The results of a four-year research project to test the effectiveness of state-of-the-art driving and communications technologies were showcased at the event. Truck platooning uses vehicle-to-vehicle communications technology to allow trucks to follow each other more closely – at about one second apart – and travel in a more coordinated fashion.
September 15, 2017 Read time: 2 mins
The US Federal Highway Administration (FHWA) has conducted the first of a two-day demonstration of three-truck platoons on I-66 in Virginia. The results of a four-year research project to test the effectiveness of state-of-the-art driving and communications technologies were showcased at the event.


Truck platooning uses vehicle-to-vehicle communications technology to allow trucks to follow each other more closely – at about one second apart – and travel in a more coordinated fashion.

While various aspects of truck platooning have been studied for years, FHWA’s Exploratory Advance Research program has taken testing to new levels with the addition of cooperative adaptive cruise control (CACC) technology, which adds vehicle-to-vehicle communications to the adaptive cruise control capability now available in new vehicles. This connectivity allows trucks to operate more smoothly as a unit, reducing and controlling the gaps between vehicles.

The demonstration involved partially automated trucks – which are not driverless, and used professional drivers. The advanced technology that makes platooning possible is meant to supplement, not replace, the nation’s commercial motor vehicle operators.

Related Content

  • Lowering the barriers to combined control rooms
    March 29, 2017
    Integrating control rooms can improve traffic management, security and emergency response without excessive cost or compromising privacy. In the wake of the recent terrorist events in France and Germany where the transport system was exploited with deadly consequences, many governments and agencies are reviewing the security arrangements – particularly around popular and high profile events. Increasing security in transport systems that must remain accessible to the general public will not be easy but in ma
  • Smart parking technologies: solving drivers parking pain
    March 30, 2017
    Smarter parking can benefit city authorities and other road users as well as drivers looking for a space, argues Dr Graham Cookson. As witnessed by the recent announcements at the Consumer Electronics Show, the automotive industry continues to focus on the driving experience; moving from speed and handling towards safety and efficiency.
  • Green requirements of traffic video systems
    February 2, 2012
    Traficon's Head of Product and Application Management Robin Collaert offers up a discussion of the likely future green requirements of traffic video systems. At the most basic levels, ITS has the potential to significantly reduce the amounts of time which vehicles spend waiting at intersections, and less time spent waiting means less in the way of vehicular emissions. All of that will hardly come as news to most laypeople, let alone transport professionals. However, the reality is that even today too many r
  • Getting to the point
    September 4, 2018
    Cars are starting to learn to understand the language of pointing – something that our closest relative, the chimpanzee, cannot do. And such image recognition technology has profound mobility implications, says Nils Lenke Pointing at objects – be it with language, using gaze, gestures or eyes only – is a very human ability. However, recent advances in technology have enabled smart, multimodal assistants - including those found in cars - to action similar pointing capabilities and replicate these human qual