Skip to main content

Federal Highway Administration showcases truck platooning technology

The US Federal Highway Administration (FHWA) has conducted the first of a two-day demonstration of three-truck platoons on I-66 in Virginia. The results of a four-year research project to test the effectiveness of state-of-the-art driving and communications technologies were showcased at the event. Truck platooning uses vehicle-to-vehicle communications technology to allow trucks to follow each other more closely – at about one second apart – and travel in a more coordinated fashion.
September 15, 2017 Read time: 2 mins
The US Federal Highway Administration (FHWA) has conducted the first of a two-day demonstration of three-truck platoons on I-66 in Virginia. The results of a four-year research project to test the effectiveness of state-of-the-art driving and communications technologies were showcased at the event.


Truck platooning uses vehicle-to-vehicle communications technology to allow trucks to follow each other more closely – at about one second apart – and travel in a more coordinated fashion.

While various aspects of truck platooning have been studied for years, FHWA’s Exploratory Advance Research program has taken testing to new levels with the addition of cooperative adaptive cruise control (CACC) technology, which adds vehicle-to-vehicle communications to the adaptive cruise control capability now available in new vehicles. This connectivity allows trucks to operate more smoothly as a unit, reducing and controlling the gaps between vehicles.

The demonstration involved partially automated trucks – which are not driverless, and used professional drivers. The advanced technology that makes platooning possible is meant to supplement, not replace, the nation’s commercial motor vehicle operators.

Related Content

  • Developments in travel information display systems
    August 1, 2012
    David Crawford looks at recent developments in travel information display systems. It is important to remember that we are investing in Real-Time Passenger Information [RTPI] to increase ridership," says Robert Burke, Managing Director of New Zealand transit tracking technology specialist Connexionz, which has been involved in at-stop and remote passenger information since 1995. "Superior information improves the perception of public transport reliability and gives the passenger more choices and greater con
  • Need for secure approach to connected vehicle technology
    January 7, 2013
    Accidental or malicious issue of false messages to connected vehicles could result in dire consequences, so secure systems of authentication and certification are likely to be necessary, write Paul Avery and Sandra Dykes. Connectivity among vehicles in urban traffic systems will provide opportunity for beneficial impacts such as congestion reduction and greater safety. However, it also creates security risks with the potential for targeted disruption. Security algorithms, protocols and procedures must take
  • New IBM study details the future of automotive industry
    January 19, 2015
    IBM has revealed results of its new Automotive 2025 Global Study, outlining an industry ripe for disruptive changes that are breaking down borders of the automotive network. The study forecasts that while the automotive industry will offer a greater personalised driving experience by 2025, fully autonomous vehicles or fully automated driving will not be as commonplace as some think. The report also indicates that consumers not only want to drive cars; they want the opportunity to innovate and co-create t
  • Lidar: beginning to see the light
    March 14, 2022
    Lidar feels like a technology whose time has come – but why now? Adam Hill talks to manufacturers, vendors and system integrators in the sector to assess the state of play and to find out what comes next