Skip to main content

Federal Highway Administration showcases truck platooning technology

The US Federal Highway Administration (FHWA) has conducted the first of a two-day demonstration of three-truck platoons on I-66 in Virginia. The results of a four-year research project to test the effectiveness of state-of-the-art driving and communications technologies were showcased at the event. Truck platooning uses vehicle-to-vehicle communications technology to allow trucks to follow each other more closely – at about one second apart – and travel in a more coordinated fashion.
September 15, 2017 Read time: 2 mins
The US Federal Highway Administration (FHWA) has conducted the first of a two-day demonstration of three-truck platoons on I-66 in Virginia. The results of a four-year research project to test the effectiveness of state-of-the-art driving and communications technologies were showcased at the event.


Truck platooning uses vehicle-to-vehicle communications technology to allow trucks to follow each other more closely – at about one second apart – and travel in a more coordinated fashion.

While various aspects of truck platooning have been studied for years, FHWA’s Exploratory Advance Research program has taken testing to new levels with the addition of cooperative adaptive cruise control (CACC) technology, which adds vehicle-to-vehicle communications to the adaptive cruise control capability now available in new vehicles. This connectivity allows trucks to operate more smoothly as a unit, reducing and controlling the gaps between vehicles.

The demonstration involved partially automated trucks – which are not driverless, and used professional drivers. The advanced technology that makes platooning possible is meant to supplement, not replace, the nation’s commercial motor vehicle operators.

Related Content

  • Top 5 trends in vision technology
    June 24, 2021
    Artificial intelligence and deep learning algorithms are among the major trends having an impact on road traffic enforcement, according to leading companies in the vision sector
  • Georgia gets SCOOT
    May 9, 2013
    Siemens has won a new SCOOT (Split Cycle Offset Optimisation Technique) project in the US State of Georgia, in an area to the north of Atlanta along State Route 9. In the first phase, SCOOT will control thirty-three intersections in the towns of Alpharetta, Roswell and Sandy Springs and it is expected that more intersections will be added to the system over the next few years. The project is being managed by Siemens USA with local dealer Temple.
  • Vision technology lifts blinkers from tunnel vision
    December 6, 2017
    Sony’s Jerome Avenel looks at how advances in imaging technology are helping improve safety. On the 24th March 1999, a Belgian truck transporting flour and margarine through the 11.6km Mont Blanc tunnel caught alight when a cigarette stub entered the engine induction snorkel, lighting the paper air filter. The fire left over 30 dead and many more injured. At the time, the Mont Blanc tunnel disaster was the world’s worst tunnel fire.
  • First trial of driverless vehicles, regulatory review launched
    February 11, 2015
    The first trial of driverless cars is launched today in the Royal Borough of Greenwich, London. The Greenwich Automated Transport Environment project (GATEway) is one of three projects chosen by the Government to deliver demonstrations of automated vehicles in urban environments. The trial officially gets underway at Greenwich Peninsula today, attended by Business Secretary Vince Cable and Transport Minister Claire Perry, who also officially launched a regulatory review and the UK Government’s ‘Intro