Skip to main content

Federal Highway Administration showcases truck platooning technology

The US Federal Highway Administration (FHWA) has conducted the first of a two-day demonstration of three-truck platoons on I-66 in Virginia. The results of a four-year research project to test the effectiveness of state-of-the-art driving and communications technologies were showcased at the event. Truck platooning uses vehicle-to-vehicle communications technology to allow trucks to follow each other more closely – at about one second apart – and travel in a more coordinated fashion.
September 15, 2017 Read time: 2 mins
The US Federal Highway Administration (FHWA) has conducted the first of a two-day demonstration of three-truck platoons on I-66 in Virginia. The results of a four-year research project to test the effectiveness of state-of-the-art driving and communications technologies were showcased at the event.


Truck platooning uses vehicle-to-vehicle communications technology to allow trucks to follow each other more closely – at about one second apart – and travel in a more coordinated fashion.

While various aspects of truck platooning have been studied for years, FHWA’s Exploratory Advance Research program has taken testing to new levels with the addition of cooperative adaptive cruise control (CACC) technology, which adds vehicle-to-vehicle communications to the adaptive cruise control capability now available in new vehicles. This connectivity allows trucks to operate more smoothly as a unit, reducing and controlling the gaps between vehicles.

The demonstration involved partially automated trucks – which are not driverless, and used professional drivers. The advanced technology that makes platooning possible is meant to supplement, not replace, the nation’s commercial motor vehicle operators.

UTC

Related Content

  • June 26, 2018
    Managed lane operators: meet the CAV pioneers
    There is some controversy over the testing of connected and autonomous vehicles – but Robert Deans of Transurban North America explains how managed lanes could be vital in the development of CAVs, benefiting everyone. Managed lane operators have the opportunity to establish themselves as leaders in the testing and roll-out of connected and automated vehicles (CAVs), assisting and accelerating the transition of CAVs onto road networks to deliver economic and safety benefits. Managed lane facilities
  • October 10, 2018
    Just Zip it! Lindsay takes to the road
    Greater vehicle connectivity is going to have huge implications for traffic management. David Arminas climbed aboard a Lindsay Road Zipper to see what this might mean in future As vice president of barrier specialist QMB Canada, Marc-Andre Seguin is sanguine about the future for moveable barriers. On the one hand, it looks good. The oft-stated advantage of moveable barriers is that the systems are cheaper to install than adding a lane or two to a highway or bridge. Directional changes to lanes can boost
  • October 28, 2019
    C/AVs could mean cheaper roads
    The safety benefits of C/AVs have long been promoted – but research suggests they should also contribute to cheaper roads. David Crawford investigates the potential benefits in infrastructure costs Building narrower freeway lanes to accommodate the enhanced route-tracking capabilities of connected and autonomous vehicles (C/AVs), running in platoon conditions, could result in cost savings of £0.5 million (€0.56 million or US$6.5 million) for every km of road length built. Such benefits could be secur
  • March 15, 2019
    Cost Benefit: Utah traffic light scheme pays dividends
    A traffic signal control scheme in Utah is being taken up by other US authorities. David Crawford finds out how the Beehive State is leading the way in DoT and driver savings Growing numbers of US state departments of transportation (DoTs) and their road users are gaining real financial benefits from an advanced approach to traffic signal monitoring recently developed in Utah. Central to the system is its use of automated traffic signal performance measures (ATSPM) technology, brought in to improve th