Skip to main content

European eCoMove consortium presents findings

After three years of research, the Cooperative Mobility Systems and Services for Energy Efficiency (eCoMove) consortium has presented its final results to the public. The consortium, comprising 32 partners including public authorities, vehicle manufacturers, service providers, infrastructure and telecommunication operators, and research institutes, has developed solutions using next-generation vehicle-to-X communication technologies to reduce the inefficiencies responsible for energy waste in road trans
November 20, 2013 Read time: 3 mins

After three years of research, The Cooperative Mobility Systems and Services for Energy Efficiency (eCoMove) consortium has presented its final results to the public.
 
The consortium, comprising 32 partners including public authorities, vehicle manufacturers, service providers, infrastructure and telecommunication operators, and research institutes, has developed solutions using next-generation vehicle-to-X communication technologies to reduce the inefficiencies responsible for energy waste in road transport.
 
According to eCoMove findings, the level of CO2 reduction depends on the traffic situation, the road network and the driver. Overall, results show that a reduction over 10 per cent is feasible in urban networks. The reduction of CO2 produced by network and routing schemes depends on the traffic load of the network; for instance if the network load is low or moderate, the reduction rate is expected to be rather small at around 4 per cent. In heavily loaded networks, the reduction can be up to 12 per cent. The largest impact on CO2 reduction can be achieved in case of severe incidents, where concerned road users need to be informed as quickly as possible about the incident and possible alternative routes.

eCoMove applications for eco-driving, fleet and traffic management show CO2 reductions ranging from 4-25 per cent. These results vary on the use, urban versus rural situations and also on the applications tested. They were based on field trials, traffic network simulations and driving simulator studies.

Jean-Charles Pandazis, eCoMove coordinator and Head of Ecomobility sector at 374 Ertico, commented: "eCoMove allows vehicles to know about downstream events and take action, for example to change route or adapt speed. Traffic control systems have more possibilities to sense approaching traffic and optimise their strategies based on this information. Infrastructure-to-vehicle communications offer more flexibility to control traffic".
 
Guillaume Vernet, Project Manager ITS at 609 Volvo Group Trucks Technology, said that: "in the commercial vehicle business, fuel consumption represents about a third of a transport company operational costs. By looking at goods distribution tour optimisation, fuel efficient navigation and eco-driving with a cooperative electronic horizon, eCoMove shows that cooperative ITS services have the potential to save fuel."

"eCoMove has shown that it is possible to reduce CO2 emissions from road traffic while simultaneously improving travel times in the road network", Klaas Rozema, Chief Technology Officer at 6999 Imtech Traffic & Infra Division said. "Imtech believes that cooperative systems are creating new opportunities for sustainable mobility, involving all stakeholders with services for end users as well as network managers, ranging from automated driving support to balancing regional networks".

For more information on companies in this article

Related Content

  • Predicting the future for video camera systems
    March 12, 2012
    Jo Versavel, Managing Director of Traficon, talks about near-term trends in video camera systems. Jo Versavel starts by making one thing clear: long-term forecasts as to what the future holds for video-based traffic monitoring are to all intents and purposes meaningless. The state of the art is developing so fast that in reality it's impossible to say where we'll be in 10 years' time, says the Managing Director of Traficon. In his opinion making firm predictions even five years out is too ambitious, whereas
  • Smart Spanish city trials cell-based traffic management
    November 7, 2013
    David Crawford reports on an urban electronic nervous system. The northern Spanish city of Santander – historically a port - is now an emerging technology showcase attracting global attention as a prototype for a medium-sized smart city of the future. In a move to determine the optimal use of available data, it is creating a de-facto experimental laboratory for sensor and mobile phone-based urban traffic management and environmental monitoring innovations.
  • Austria’s answer to temporary traffic problems
    December 22, 2015
    ASFINAG has developed a mobile traffic monitoring and guidance system through a pre-commercial procurement project. Drivers have become accustomed to roadside and gantry-mounted traffic guidance and control systems along the major roads and main motorway sections. But there are occasions when intense monitoring is required on a temporary basis along motorway sections without traffic guidance and control systems and on federal and national roads too. Examples include the monitoring of the traffic flow during
  • Countering congestion’s cost
    May 6, 2015
    A new report on the economic costs of traffic congestion predicts the problem will worsen significantly in future. Jon Masters reviews the figures and some suggested solutions. New figures on the rising economic and environmental costs of congestion have been published by the US traffic data specialist Inrix and the UK’s Centre for Economics & Business Research (Cebr). Their report finds the problem much bigger than previously thought.