Skip to main content

European eCoMove consortium presents findings

After three years of research, the Cooperative Mobility Systems and Services for Energy Efficiency (eCoMove) consortium has presented its final results to the public. The consortium, comprising 32 partners including public authorities, vehicle manufacturers, service providers, infrastructure and telecommunication operators, and research institutes, has developed solutions using next-generation vehicle-to-X communication technologies to reduce the inefficiencies responsible for energy waste in road trans
November 20, 2013 Read time: 3 mins

After three years of research, The Cooperative Mobility Systems and Services for Energy Efficiency (eCoMove) consortium has presented its final results to the public.
 
The consortium, comprising 32 partners including public authorities, vehicle manufacturers, service providers, infrastructure and telecommunication operators, and research institutes, has developed solutions using next-generation vehicle-to-X communication technologies to reduce the inefficiencies responsible for energy waste in road transport.
 
According to eCoMove findings, the level of CO2 reduction depends on the traffic situation, the road network and the driver. Overall, results show that a reduction over 10 per cent is feasible in urban networks. The reduction of CO2 produced by network and routing schemes depends on the traffic load of the network; for instance if the network load is low or moderate, the reduction rate is expected to be rather small at around 4 per cent. In heavily loaded networks, the reduction can be up to 12 per cent. The largest impact on CO2 reduction can be achieved in case of severe incidents, where concerned road users need to be informed as quickly as possible about the incident and possible alternative routes.

eCoMove applications for eco-driving, fleet and traffic management show CO2 reductions ranging from 4-25 per cent. These results vary on the use, urban versus rural situations and also on the applications tested. They were based on field trials, traffic network simulations and driving simulator studies.

Jean-Charles Pandazis, eCoMove coordinator and Head of Ecomobility sector at 374 Ertico, commented: "eCoMove allows vehicles to know about downstream events and take action, for example to change route or adapt speed. Traffic control systems have more possibilities to sense approaching traffic and optimise their strategies based on this information. Infrastructure-to-vehicle communications offer more flexibility to control traffic".
 
Guillaume Vernet, Project Manager ITS at 609 Volvo Group Trucks Technology, said that: "in the commercial vehicle business, fuel consumption represents about a third of a transport company operational costs. By looking at goods distribution tour optimisation, fuel efficient navigation and eco-driving with a cooperative electronic horizon, eCoMove shows that cooperative ITS services have the potential to save fuel."

"eCoMove has shown that it is possible to reduce CO2 emissions from road traffic while simultaneously improving travel times in the road network", Klaas Rozema, Chief Technology Officer at 6999 Imtech Traffic & Infra Division said. "Imtech believes that cooperative systems are creating new opportunities for sustainable mobility, involving all stakeholders with services for end users as well as network managers, ranging from automated driving support to balancing regional networks".

For more information on companies in this article

Related Content

  • Smarter transportation infrastructure means smarter choices says IBM
    November 26, 2013
    Last month’s Economic Development Vitality Initiative forum, co-sponsored by IBM, identified strong infrastructure, including intelligent transportation systems (ITS) as highlighted by panellist Scott Belcher, CEO of ITS America, as essential. The key to ensuring the sustainability and resilience of our critical transportation infrastructure, in the end, comes down to encouraging the right choices. Data collected by industry, government and academia over the past several decades shows a clear correlation
  • Imtech awarded major Finnish motorway contract
    June 9, 2015
    In a contract valued at over US$11 million, Imtech Traffic & Infra is to implement the traffic control system and lighting for the E18 motorway in Finland. The contract, awarded by Finnish infrastructure company YIT Rakennus, includes detailed design, software development, communication network equipment, power supply, lighting and traffic control equipment for tunnel and motorway, tunnel safety systems, CCTV system, cabling, installation works, system commissioning and maintenance. Construction will
  • Intersection collision avoidance system trial
    January 31, 2012
    Although much of the emphasis of research into intersection management has tended to concentrate on the needs of urban locations, there remain specific issues pertaining to rural intersections which need to be addressed. Here, Rebecca Szymkowski and Greg Helgeson, Wisconsin DOT, Todd Szymkowski, University of Wisconsin-Madison, and Craig Shankwitz and Arvind Menon, University of Minnesota detail progress on an intersection collision avoidance system for more remote locations.
  • Dynamic charging boosts electric vehicles’ potential
    December 16, 2014
    With an increasing need to use electric vehicles in city centres to reduce pollution, David Crawford looks at various solutions to power delivery. The UN’s September 2014 Climate Summit has added fresh momentum to the drive to increase urban electric vehicle (EV) takeup. It has launched the Urban Electric Mobility Initiative, which wants to see EVs accounting for 30% of all urban travel by 2030, and make cities worldwide more friendly to their use. Encouragingly, the plan is being well supported by commerci