Skip to main content

Driverless truck could improve workzone safety

A driverless truck, demonstrated this week by Pennsylvania vehicle manufacturer Royal Truck and Equipment, could help improve workzone safety, says the company. The truck, fitted with special rear-end crash attenuators and lights, was demonstrated using GPS waypoints and following a lead car, mimicking its path, braking and speed. The company has teamed up with Micro Systems to integrate military technology into truck mounted attenuators (TMA), which are used on many roads in the US to protect workers
August 27, 2015 Read time: 2 mins
A driverless truck, demonstrated this week by Pennsylvania vehicle manufacturer Royal Truck and Equipment, could help improve workzone safety, says the company.

The truck, fitted with special rear-end crash attenuators and lights, was demonstrated using GPS waypoints and following a lead car, mimicking its path, braking and speed.

The company has teamed up with Micro Systems to integrate military technology into truck mounted attenuators (TMA), which are used on many roads in the US to protect workers at road construction sites where there are no barricades.

The automated truck mounted attenuator (ATMA) truck is equipped with an electro-mechanical system and fully integrated sensor suite that will enable leader/follower capability that allows the ATMA to follow a lead vehicle completely unmanned.

Manned trucks fitted with impact attenuators, or crash cushions, on the rear of the vehicle, which absorb impacts and protect workers, have been credited with saving lives, but the drivers of the trucks are inevitably placed in harm’s way, “literally waiting to be struck,” said Robert Roy, president of Royal Truck & Equipment, maker of the autonomous trucks.

“Any time a driver can be removed from these vehicles in a very dangerous situation, and if the vehicle’s struck, there’s nobody inside of it to receive the damage or the injuries, that’s measuring success,” Roy said.

Two of the autonomous vehicles are set to make their debut at highway construction sites in Florida by the end of the year under a state department of transportation demonstration program.

Related Content

  • ASECAP examines tolling’s trials, tribulations and triumphs
    September 4, 2018
    If you want to get up to speed on the main issues facing the transport sector and tolling companies, ASECAP Study Days event in Ljubljana was a good place to start. Colin Sowman reports (Photographs: Louis David). Increasing populations, ever-higher technical and safety requirements, and electric and hybrid vehicles will provide both challenges and opportunities for tolling companies. The annual Study Days event organised by ASECAP (the European association for tolling companies) examined all of these aspec
  • Pioneering sensors collect weather data from moving vehicles
    January 20, 2012
    ITS International contributing editor David Crawford foresees the vehicle as 'sentinel being'
  • ITS ‘could save Australia US$500 million a year’
    February 22, 2013
    According to Australia’s federal infrastructure and transport minister, Anthony Albanese, an Australia-wide electronic freeway management system has the potential to greatly reduce congestion and save Australian families and businesses more than US$500 million a year. Albanese said as much as he announced the US$21 million contract to deliver an Intelligent Transport System (ITS) and communications infrastructure to the Westgate freeway managed motorway project in Victoria under the national smart managed m
  • High level support for US DOT decision on vehicle to vehicle technology
    February 4, 2014
    The US Department of Transportation's (DOT) National Highway Traffic Safety Administration (NHTSA) is to begin taking steps to enable vehicle-to-vehicle (V2V) communication technology for light vehicles. This technology would improve safety by allowing vehicles to communicate with each other and ultimately avoid many crashes altogether by exchanging basic safety data, such as speed and position, ten times per second. DOT research indicates that safety applications using V2V technology can address a large