Skip to main content

DriveOhio to monitor traffic and road incidents with drones

DriveOhio will use unmanned aircraft systems (UAS) to understand how to manage traffic, roadway incidents and roadway conditions along the 33 Smart Mobility Corridor from 1 July. The three-year project, valued $5.9m, is intended to complement autonomous and connected vehicle tests along the 35-mile stretch between Dublin and East Liberty.
June 8, 2018 Read time: 2 mins
DriveOhio will use unmanned aircraft systems (UAS) to understand how to manage traffic, roadway incidents and roadway conditions along the 33 Smart Mobility Corridor from 1 July. The three-year project, valued $5.9m, is intended to complement autonomous and connected vehicle tests along the 35-mile stretch between Dublin and East Liberty.


This study stems from a partnership between DriveOhio’s UAS Center and the Ohio State University College of Engineering.

The research will be carried out by air and ground vehicles while the drones will monitor traffic and incident response along with the state's fixed-location traffic camera system. The UAS will interact with sensors and communication equipment to feed data into the state’s traffic management centre.

Additionally, the initiative will use sensors and communication devices to ensure unmanned aircraft will not collide with each other or with small planes and helicopters.

Fred Judson, director of DriveOhio’s UAS Center, says: “This research project will make the development of that safety system a priority so that other aircraft operations such as package delivery and air taxi services can be explored down the road.”

Other members involved in the project include Cal Analytics, Gannett Fleming, Airxos, Gryphon Sensors, Transportation Research Center, Woolpert, the Ohio State University Airport and Midwest Air Traffic Control.

Related Content

  • April 15, 2015
    MnDOT to pilot radar system for traffic monitoring
    The US’s Federal Communications Commission (FCC) has given approval to the Minnesota Department of Transportation (MnDOT) to trial the use of a radar system to monitor and study traffic flow on Interstate 94. The idea to use radar for traffic monitoring was originally submitted to the agency under its Innovative Idea Program last June. Currently, the proposal is to deploy a traffic detection system that can monitor six lanes of traffic and two overhead bridges from one location. The objective is to
  • June 12, 2015
    Temporary CCTV poses more challenges than permanent installations
    Long-term roadworks pose particular problems for temporary surveillance installations. Converting the hard shoulder to a running lane, either full- or part-time, is the UK Highways Agency’s solution to ease motorway congestion. This is leading to a number of long-term projects where large stretches of the hard shoulder are closed off by temporary concrete barriers and during these roadwork programmes, temporary CCTV cameras are deployed to monitor and record vehicle traffic and workers.
  • January 24, 2024
    TRB 2024 challenge spurs smart transportation innovation
    The Center for Urban Informatics and Progress at UTC, Amazon Web Services, the National Science Foundation, the City of Chattanooga and ITS America sponsored the Transportation Forecasting Competition at TRB 2024: and the challenge threw up some fascinating projects
  • November 21, 2012
    Intelligent lane control signals help direct driver behaviour
    As part of a larger effort exploring the effects of roadway signage on driver behaviour, researchers from the University of Minnesota College of Design have conducted a study on the effectiveness of intelligent lane control signals (ILCS). During the study, was funded by the Minnesota Department of Transportation (MnDOT), the research team used a driving simulator to test ILCS that displayed merge, speed control, and lane-closure warnings over freeway lanes. The researchers were specifically interested in d