Skip to main content

DriveOhio to monitor traffic and road incidents with drones

DriveOhio will use unmanned aircraft systems (UAS) to understand how to manage traffic, roadway incidents and roadway conditions along the 33 Smart Mobility Corridor from 1 July. The three-year project, valued $5.9m, is intended to complement autonomous and connected vehicle tests along the 35-mile stretch between Dublin and East Liberty.
June 8, 2018 Read time: 2 mins
DriveOhio will use unmanned aircraft systems (UAS) to understand how to manage traffic, roadway incidents and roadway conditions along the 33 Smart Mobility Corridor from 1 July. The three-year project, valued $5.9m, is intended to complement autonomous and connected vehicle tests along the 35-mile stretch between Dublin and East Liberty.


This study stems from a partnership between DriveOhio’s UAS Center and the Ohio State University College of Engineering.

The research will be carried out by air and ground vehicles while the drones will monitor traffic and incident response along with the state's fixed-location traffic camera system. The UAS will interact with sensors and communication equipment to feed data into the state’s traffic management centre.

Additionally, the initiative will use sensors and communication devices to ensure unmanned aircraft will not collide with each other or with small planes and helicopters.

Fred Judson, director of DriveOhio’s UAS Center, says: “This research project will make the development of that safety system a priority so that other aircraft operations such as package delivery and air taxi services can be explored down the road.”

Other members involved in the project include Cal Analytics, Gannett Fleming, Airxos, Gryphon Sensors, Transportation Research Center, Woolpert, the Ohio State University Airport and Midwest Air Traffic Control.

UTC

Related Content

  • September 16, 2019
    Wyoming develops open-source RSU monitoring app
    A connected vehicle project in the US state of Wyoming has developed an open-source application to allow third parties to monitor safety along the I-80 highway. The Wyoming Department of Transportation (WYDoT) Connected Vehicle Pilot includes the deployment of 75 roadside units (RSUs) along 400 miles of I-80. WYDoT’s app allows authorised transportation management centre (TMC) operators to monitor and manage each RSU on the route – and can also be used to let the travelling public know what is happening.
  • February 1, 2012
    Vehicle data translator for road weather monitoring
    Sheldon Drobot, Michael Chapman and Amanda Anderson, NCAR, and Paul Pisano, FHWA, detail latest results of testing of a vehicle data translator for road weather monitoring and information applications. The use of vehicle sensor data to improve weather and road condition products, envisioned as part of the US Department of Transportation Research and Innovative Technology Administration's (RITA's) IntelliDriveSM initiative, could revolutionise the provision of road weather information to transportation syste
  • December 3, 2013
    ITS adaptions enhance cycle safety in Dublin
    Enabled and enforced by innovative use of ITS, Dublin’s new off-road cycle route is proving a hit with commuters, leisure cyclists and walkers alike as Brendan O’Brien explains. Dublin City Council’s vision is to create a city where people of all ages and abilities have the confidence, incentive and facilities to cycle. On-road cycle lanes had already been incorporated into the Quality Bus Corridors design and there is a mix of on- and off-road cycle routes. However, in 2010 the Council began work on a new
  • June 17, 2019
    Here’s HD AV map prepared for 5G
    The emergence of 5G may not be necessary to provide a high-definition map for autonomous driving, says Matt Preyss from Here Technologies. Ben Spencer asks why 5G is a hot topic worldwide, with the potential for faster transfer of information eagerly awaited by those convinced that it will be a game-changer for the ITS industry. High-definition (HD) maps are essential to allow autonomous vehicles (AVs) to understand their environment, and operate safely within it in relation to other road users and p