Skip to main content

City of Seattle implements SCOOT adaptive traffic management

Seattle Department of Transportation (SDOT) has implemented a new adaptive traffic control system at 32 intersections along Mercer Street between 3rd Ave W and I-5, which has been one of the city’s most congested corridors for over 40 years. Developed by the UK’s Transport Research Laboratory, the SCOOT (Split Cycle Offset Optimisation Technique) system coordinates the operation of the traffic signals in and around the corridor to help vehicles move more efficiently. SCOOT works in real-time to reduce delay
May 2, 2017 Read time: 2 mins
Seattle Department of Transportation (SDOT) has implemented a new adaptive traffic control system at 32 intersections along Mercer Street between 3rd Ave W and I-5, which has been one of the city’s most congested corridors for over 40 years.


Developed by the UK’s Transport Research Laboratory, the SCOOT (Split Cycle Offset Optimisation Technique) system coordinates the operation of the traffic signals in and around the corridor to help vehicles move more efficiently.

SCOOT works in real-time to reduce delays and adapt to changing traffic volumes, such as congestion caused by nearby sport or concert events. The system detects cars in each lane at every intersection. It determines traffic levels, predicts the flow of traffic and adjusts the amount of time available to each movement through the intersection. The result is more effective and responsive signal operations. SCOOT provides significant benefits:

• Quicker, more reliable travel times through the network
• Enhanced transit operations
• Reduced overall emissions and fuel consumption
• Effective management of traffic fluctuations due to special events

To assess the how well SCOOT is working, vehicle data is being collected daily and compared to historical averages. Reporting periods include the three-hour morning and evening peak travel times in both the eastbound and westbound directions during the five-day working week. From the data received to date, drivers travelling east during peak times are experiencing a six per cent increase in morning travel time reliability and 38 per cent in the evenings.

“This new system will adjust signal timing based on traffic in and around Mercer in real time. We know Mercer is the busiest corridor in the city,” said SDOT Director Scott Kubly. “SCOOT will help reduce the traffic backups we’ve seen along Mercer and help keep people moving.”

Related Content

  • Want intelligent transit? Then share data
    March 2, 2022
    How will the US deploy intelligent transit networks that enable connected vehicles? Data sharing is crucial if urban mobility users are to benefit, explains Timothy Menard of Lyt
  • TfL to launch world-leading trials of intelligent pedestrian crossing technology
    March 7, 2014
    The Mayor of London, Boris Johnson, and Transport for London (TfL) have outlined plans for trialling new pedestrian crossing sensors to help make it easier and safer for people to cross the road throughout the capital. The introduction of pedestrian Split Cycle Offset Optimisation Technique, or pedestrian SCOOT, is the first of its kind in the world and uses state-of-the-art video camera technology to automatically detect how many pedestrians are waiting at crossings. It enables the adjustment of traffi
  • US state of the art workzone safety
    January 25, 2012
    The Texas Transportation Institute's Jerry Ullman talks about the state of the art in work zone safety in the US. Work zones are places where, perhaps more than anywhere else on the road network, mobility and safety are strongly linked. Historically, field crews and contractors wanted vehicles in work zones to be moving as slowly as possible, assuming that made conditions the safest for work crews. We are though starting to see a shift in such thinking with the realisation that excessive delays or slow-down
  • Congestion up globally says TomTom
    March 23, 2016
    According to TomTom’s latest Traffic Index, traffic congestion has increased 13 per cent globally since 2008. But there are big differences between continents; while North America’s traffic congestion has jumped by 17 per cent, Europe has risen just two per cent. TomTom believe the contrasts probably are driven by economic growth in North America and financial troubles in the many parts of Europe. In particular, some countries have recorded a marked drop in traffic over the past eight years, including It