Skip to main content

Automated traffic gates deployed on Auckland infrastructure project

The Victoria Park Tunnel, a significant infrastructure improvement to connect the Auckland harbour bridge to the Central Motorway in Auckland, New Zealand, has deployed a SwiftGate automated lane closure system. At the heart of the infrastructure project is an additional on-ramp built to increase the accessibility of the northbound highway lanes directly from urban downtown streets. This additional access is only available during peak hours when a movable barrier is shifted out, which meant that the ramp en
May 16, 2012 Read time: 2 mins
RSSThe Victoria Park Tunnel, a significant infrastructure improvement to connect the Auckland harbour bridge to the Central Motorway in Auckland, New Zealand, has deployed a SwiftGate automated lane closure system.

At the heart of the infrastructure project is an additional on-ramp built to increase the accessibility of the northbound highway lanes directly from urban downtown streets. This additional access is only available during peak hours when a movable barrier is shifted out, which meant that the ramp entry point needed to be opened and closed on a daily basis. The SwiftGate automated lane closure system now used to facilitate this operation features solar powered automated traffic control gates that can be opened and closed remotely. For the Victoria Park Tunnel Project the SwiftGates needed to be fully integrated into the complex ITS infrastructure that was being implemented during the project. Situated at the busy Beaumont / Fanshawe intersection, the SwiftGates are integrated via the 538 Versilis Commander Interface module to operate in sync with warning signs, traffic lights and indicative panels. The operation of the SwiftGates involves coordination between the movable barrier machine operators and the personnel  at the traffic control centre.

This project is the second permanent SwiftGate installation which includes full integration into an existing or new ITS infrastructure. The first project of this kind was the Jacques-Cartier Bridge, in Montreal, Canada, installation in March 2011 which allowed for the safe operation of the bridge’s reversible lane.

For more information on companies in this article

Related Content

  • Colombian highway sees ITS tested to the extreme
    November 13, 2014
    One of the most challenging road construction and ITS projects currently underway is the upgrading of the road from Bogota to Villavicencio. Currently it takes four hours to make the 86km journey between Bogota and Villavicencio using the existing single lane in each direction road which passes through some very challenging terrain. It is the only ground connection between central Colombia and the eastern region which represents 40% of the country’s territory.
  • Indra implements ITS technology on Mexico’s Guadalajara-Tepic motorways
    May 22, 2012
    The leading road concessionaire in Mexico, Ideal, has awarded Spanish multinational Indra a US$21.67 million contract for implementing its technology in the three motorways that make up what is known as Mexico's South Pacific Package for the amount of €17 million. The project consists of implementing the ITS as well as the tolls and electronic tolls on the motorway that connects the cities of Tepic and Guadalajara, the second most important in Mexico, as well as in the beltways of both cities.
  • Data exploits parking potential
    March 11, 2015
    David Crawford parallel parks with innovations in two continents. Surveys of US cities indicate that drivers searching for parking can account for up to 37% of all urban traffic congestion. A 2011 study by IBM of 20 cities around the world found that nearly six out of ten drivers had abandoned their search for a parking space at least once; while motorists generally spent on average 20 minutes looking for a sought-after spot.
  • Olympic challenges in Sochi
    May 27, 2014
    Sporting events always create problems for traffic planners and none more so than the Winter Olympics. It is difficult to think of more diametrically opposite challenges for transport planners than the 2012 Olympics in London and this year’s Winter Olympics in Sochi: from a summer event in the heart of a megacity with well established transport infrastructure to winter games with unpredictable weather and events in remote and mountainous locations. The Winter Games are always a challenge and Sochi was no di