Skip to main content

Automated traffic gates deployed on Auckland infrastructure project

The Victoria Park Tunnel, a significant infrastructure improvement to connect the Auckland harbour bridge to the Central Motorway in Auckland, New Zealand, has deployed a SwiftGate automated lane closure system. At the heart of the infrastructure project is an additional on-ramp built to increase the accessibility of the northbound highway lanes directly from urban downtown streets. This additional access is only available during peak hours when a movable barrier is shifted out, which meant that the ramp en
May 16, 2012 Read time: 2 mins
RSSThe Victoria Park Tunnel, a significant infrastructure improvement to connect the Auckland harbour bridge to the Central Motorway in Auckland, New Zealand, has deployed a SwiftGate automated lane closure system.

At the heart of the infrastructure project is an additional on-ramp built to increase the accessibility of the northbound highway lanes directly from urban downtown streets. This additional access is only available during peak hours when a movable barrier is shifted out, which meant that the ramp entry point needed to be opened and closed on a daily basis. The SwiftGate automated lane closure system now used to facilitate this operation features solar powered automated traffic control gates that can be opened and closed remotely. For the Victoria Park Tunnel Project the SwiftGates needed to be fully integrated into the complex ITS infrastructure that was being implemented during the project. Situated at the busy Beaumont / Fanshawe intersection, the SwiftGates are integrated via the 538 Versilis Commander Interface module to operate in sync with warning signs, traffic lights and indicative panels. The operation of the SwiftGates involves coordination between the movable barrier machine operators and the personnel  at the traffic control centre.

This project is the second permanent SwiftGate installation which includes full integration into an existing or new ITS infrastructure. The first project of this kind was the Jacques-Cartier Bridge, in Montreal, Canada, installation in March 2011 which allowed for the safe operation of the bridge’s reversible lane.

For more information on companies in this article

Related Content

  • Danish, Swiss companies partner on smart city services in Denmark
    January 28, 2016
    Danish regional energy and fibre broadband provider EnergiMidt and Swiss technology company Paradox Engineering are to partner on the development of innovative smart city networks and provide advanced services to public sector and private business customers in Denmark. The two companies are already collaborating on a smart lighting and smart parking pilot project in the village of Almind, in the community of Viborg, Denmark, to test both smart lighting and smart parking solutions to evaluate possible extens
  • Driverless car completes 286km road trip in China report
    April 18, 2012
    The newspaper China Daily has reported that last month a driverless car, a Hongqi HQ3 with full intellectual property rights developed by the National University of Defense Technology, travelled on an expressway linking Changsha and Wuhan, the capitals of Hunan and Hubei provinces, under full computer and sensor control.
  • Moxa provides clear vision for Caldecott Tunnel’s Fourth Bore
    September 15, 2014
    Caldecott Tunnel’s new Fourth Bore is utilising a bespoke high-capacity monitoring and communications network from Moxa. The Caldecott Tunnel connects Contra Costa and Alameda counties in Northern California and traditionally it has suffered severe congestion - especially during peak hours. Opened in 1937 as a twin-bore arrangement, by 1964 the increase in traffic volumes led to a third bore being added. Shortly after the third bore was opened a tidal flow was introduced with the centre bore alternating in
  • Wavetronix radar-based traffic sensor cuts costs
    May 30, 2013
    While initial cost of radar based detection may be higher than that traditional loops, lower maintenance costs more than balance the books. Following successful field tests, the US city of Greenville, North Carolina, has recently agreed a new policy of phasing in Wavetronix traffic sensor technology’s radar-based SmartSensor Matrix system across its signalised traffic intersections. City traffic engineer Rik DiCesare expects the incremental implementation to deliver benefits to both the city’s taxpayers an