Skip to main content

Aimsun enters partnership to develop tool for managing mixed-autonomy traffic

Aimsun has partnered with UC Berkeley’s Institute of Transportation Studies to develop Flow, a tool for managing large-scale traffic systems where human-driven and autonomous vehicles (AVs) operate together. Flow offers a suite of pre-built traffic scenarios and is now integrated with Aimsun Next mobility modelling software. The open source architecture knits together microsimulation tools with deep reinforcement learning libraries in the cloud. Launched last September, Flow allows users to build and
January 15, 2019 Read time: 2 mins

16 Aimsun has partnered with UC Berkeley’s Institute of Transportation Studies to develop Flow, a tool for managing large-scale traffic systems where human-driven and autonomous vehicles (AVs) operate together.

Flow offers a suite of pre-built traffic scenarios and is now integrated with Aimsun Next mobility modelling software. The open source architecture knits together microsimulation tools with deep reinforcement learning libraries in the cloud.

Launched last September, Flow allows users to build and combine modular traffic scenarios to tackle complex situations, the company says. For example, single-lane/multi-lane and merge building blocks can be used to study stop-and-go merging traffic behaviours along a highway.  

“In mixed-autonomy traffic control, evaluating machine learning methods is challenging due to the lack of standardised benchmarks,” says Alexandre Bayen, director, 8895 ITS Berkeley. “Systematic evaluation and comparison will not only further our understanding of the strengths of existing algorithms but also reveal their limitations and suggest directions for future research.”

For more information on companies in this article

Related Content

  • FHWA collaborative framework on automated driving systems: an explainer
    September 26, 2023
    USDoT FHWA has put together a collaborative framework to help secure the roll-out of automated driving systems in the US. John Harding of FHWA explains the thinking…
  • Statistical improvement for short-term travel time predictions
    June 2, 2014
    Researchers at Imperial College in London have developed a generic three-stage short-term travel prediction model that promises to give greater accuracy under both normal and abnormal conditions. As travellers do not like the randomness of non-recurrent traffic congestion and delays, it is particularly useful for network managers to know how the ongoing traffic situation will develop when an atypical event occurs.
  • Inrix informs FHWA’s data improvements
    December 19, 2017
    Refinements in the data available from the US Federal Highway Administration will improve road management across America. David Crawford reports. In August 2017, the US Federal Highway Administration (FHWA) issued the first results from an upgraded version of its National Performance Management Research Data Set (NPMRDS). Developed to identify the locations and times of high congestion affecting traffic flows along America’s 259,000km (161,000 mile) national highway system, this is a key resource for sta
  • Changing roles in data collection for traffic management
    January 23, 2012
    Transport for Greater Manchester's David Hytch discusses the evolving roles of the public and private sector in managing and disseminating data. Data services for traffic management were once the sole preserve of public sector organisations, they being uniquely placed and equipped for the work involved. Now, though, this is changing. There is even a presumption in some countries that the private sector will take a greater, if not actually a lead, role in the provision of information for transport management