Skip to main content

Aimsun enters partnership to develop tool for managing mixed-autonomy traffic

Aimsun has partnered with UC Berkeley’s Institute of Transportation Studies to develop Flow, a tool for managing large-scale traffic systems where human-driven and autonomous vehicles (AVs) operate together. Flow offers a suite of pre-built traffic scenarios and is now integrated with Aimsun Next mobility modelling software. The open source architecture knits together microsimulation tools with deep reinforcement learning libraries in the cloud. Launched last September, Flow allows users to build and
January 15, 2019 Read time: 2 mins

16 Aimsun has partnered with UC Berkeley’s Institute of Transportation Studies to develop Flow, a tool for managing large-scale traffic systems where human-driven and autonomous vehicles (AVs) operate together.

Flow offers a suite of pre-built traffic scenarios and is now integrated with Aimsun Next mobility modelling software. The open source architecture knits together microsimulation tools with deep reinforcement learning libraries in the cloud.

Launched last September, Flow allows users to build and combine modular traffic scenarios to tackle complex situations, the company says. For example, single-lane/multi-lane and merge building blocks can be used to study stop-and-go merging traffic behaviours along a highway.  

“In mixed-autonomy traffic control, evaluating machine learning methods is challenging due to the lack of standardised benchmarks,” says Alexandre Bayen, director, 8895 ITS Berkeley. “Systematic evaluation and comparison will not only further our understanding of the strengths of existing algorithms but also reveal their limitations and suggest directions for future research.”

For more information on companies in this article

Related Content

  • Cohda trial proves C-ITS can work in tunnels
    August 29, 2019
    Connected cars require uninterrupted signals to ensure driving safety. Going underground creates problems – but a trial in Norway suggests that there might be light at the end of the tunnel… As connectivity becomes increasingly important for transportation – in particular for connected and autonomous vehicles (C/AVs) - the problem of ‘blackspots’ and dead zones where signals fail or drop out is a pressing one. But developments early this year suggest that advances in technology might be on the brink of d
  • SwRI uses AI on Tennessee integrated corridor
    April 22, 2021
    SwRI is developing machine learning algorithms to help coordinate traffic management
  • Automatic signal control to prevent emergency vehicle collisions?
    March 14, 2012
    Field trials under way in Arizona promise eradication of accidents between emergency vehicles at intersections – as part of a national focus on ‘intelligent signal’ infrastructure. Collisions between police cars, ambulances and fire crews as they reach intersections at the same time, with equal priority given by all signals set on red, are as serious as they sound absurd. For emergency teams and those in need of their help, the consequences are dire. The solution could come from application of connected veh
  • Debating the future development of ANPR
    July 31, 2012
    What future is there for automatic number plate recognition? Will it be supplanted by electronic vehicle identification, or will continuing development maintain the technology's relevance? In recent years, digitisation and IP-based communication networks have allowed Automatic Number Plate Recognition (ANPR) to achieve ever-greater utility and a commensurate increase in deployments. But where does the technology go next - indeed, does it have a future in the face of the increasing use of, for instance, Dedi