Skip to main content

Aimsun enters partnership to develop tool for managing mixed-autonomy traffic

Aimsun has partnered with UC Berkeley’s Institute of Transportation Studies to develop Flow, a tool for managing large-scale traffic systems where human-driven and autonomous vehicles (AVs) operate together. Flow offers a suite of pre-built traffic scenarios and is now integrated with Aimsun Next mobility modelling software. The open source architecture knits together microsimulation tools with deep reinforcement learning libraries in the cloud. Launched last September, Flow allows users to build and
January 15, 2019 Read time: 2 mins

16 Aimsun has partnered with UC Berkeley’s Institute of Transportation Studies to develop Flow, a tool for managing large-scale traffic systems where human-driven and autonomous vehicles (AVs) operate together.

Flow offers a suite of pre-built traffic scenarios and is now integrated with Aimsun Next mobility modelling software. The open source architecture knits together microsimulation tools with deep reinforcement learning libraries in the cloud.

Launched last September, Flow allows users to build and combine modular traffic scenarios to tackle complex situations, the company says. For example, single-lane/multi-lane and merge building blocks can be used to study stop-and-go merging traffic behaviours along a highway.  

“In mixed-autonomy traffic control, evaluating machine learning methods is challenging due to the lack of standardised benchmarks,” says Alexandre Bayen, director, 8895 ITS Berkeley. “Systematic evaluation and comparison will not only further our understanding of the strengths of existing algorithms but also reveal their limitations and suggest directions for future research.”

For more information on companies in this article

Related Content

  • Siemens’ acquisitions allow ‘door-to-door mobility’
    June 7, 2018
    Siemens says its recent acquisitions will provide travellers with a complete set of tools to improve mobility. “It’s about re-imagining the way people travel, not just from A to B but from A to Z,” Marcus Welz, president and CEO of Siemens Intelligent Transportation Systems, told Daily News. “We are using technology as an enabler to get on top of the various challenges people face: individual transport, public transport, the first and last mile – and everything in between.” Siemens has added three software
  • Truck platooning trials take to the highways
    July 24, 2017
    There is rising enthusiasm in America and beyond for the concept of truck platooning with trials being planned in several US states, as David Crawford reports. Growing numbers of US states are considering or implementing plans for trials of electronically-linked truck platooning on public road networks. This is in response to the interest being shown by the US$70bn a year road freight industry, where fuel represents 41% of the operating costs making the prospect of improving fuel economy by trucks travellin
  • Truck platooning trials take to the highways
    July 24, 2017
    There is rising enthusiasm in America and beyond for the concept of truck platooning with trials being planned in several US states, as David Crawford reports. Growing numbers of US states are considering or implementing plans for trials of electronically-linked truck platooning on public road networks. This is in response to the interest being shown by the US$70bn a year road freight industry, where fuel represents 41% of the operating costs making the prospect of improving fuel economy by trucks travellin
  • PTV sets its sights on Smart City solutions
    February 9, 2017
    Making a city smarter not only relies on understand technological opportunities but also human decision-making, as Miller Crockart explains. Cities are about people – a fact that can easily be forgotten when experts talk about roads, healthcare and education as though they are abstract and unconnected monoliths rather than things people use. Understanding how and why people use services is vital for making decisions on how they can be optimised for maximum efficiency across inter-connected networks that for