Skip to main content

Virtual modelling shows driverless cars could cut delays in the future

Driverless cars could significantly reduce delays according to a new study by the Department for Transport (DfT). The project used computer software to create virtual models of different parts of the UK road network including urban roads and a 20km motorway section. Delays and traffic flow were all shown to improve as the proportion of automated vehicles increased above specific levels.
January 9, 2017 Read time: 2 mins

Driverless cars could significantly reduce delays according to a new study by the Department for Transport (DfT).

The project used computer software to create virtual models of different parts of the UK road network including urban roads and a 20km motorway section. Delays and traffic flow were all shown to improve as the proportion of automated vehicles increased above specific levels.

DfT believes the study demonstrates that driverless cars offer major potential benefits when the proportion of them on the road is higher than the proportion of older, more traditional vehicles.

It says the study is an important first step towards understanding the full range of complex effects of these technologies. It paves the way for further trials and research to help ensure the transition to driverless or automated vehicles is safe and beneficial for all.

The study examined different scenarios including the level of automation, the proportion of vehicles equipped with the technology and different automated driving styles. The main findings of the report included that, on major roads where traditional vehicles outnumbered automated vehicles benefits are relatively small, but increase as the percentage of driverless cars on the roads increases. When measuring peak traffic periods with a maximum of up to 100 per cent of driverless vehicles researchers saw journey times reduced by more than 11 per cent and delays cut by more than 40 per cent.

On urban roads benefits were seen in peak traffic periods even with low levels of automated vehicles on roads - benefits include a 12 per cent improvement in delays and a 21 per cent improvement in journey time reliability.

Related Content

  • Bringing AI into ITS: Artificial realities
    May 21, 2025
    AI can have a positive transformative effect on transportation safety and efficiency – but if you want creativity you still need a person, says Huawei
  • New Zealand seeks comprehensive CBA framework
    October 5, 2016
    New report highlights how assessing the financial benefit of deploying ITS is an involved and evolving calculation Following a global search, five key action areas have emerged from the New Zealand Transport Agency’s recent scoping of a more comprehensive cost–benefit analysis framework for evaluating planned ITS deployments. A report commissioned from engineering consultancy Aecom New Zealand sets out the groundwork for more closely-defined assessments that will convincingly support public-sector policy ma
  • Advanced Driver Assistance Systems: a solution or another problem?
    November 27, 2013
    Do Advanced Driver Assistance Systems represent a positive step forward for safety, or something of a safety risk? Jason Barnes discusses the issue with leading industry figures. Advanced Driver Assistance Systems (ADAS) are already common. Anti-lock brakes or electronic stability control are well understood and are either fitted as standard or frequently requested by new vehicle buyers. More advanced ADAS features are appearing on many top-end vehicles and the trickle-down has already started. Adaptive
  • Getting C/AVs from pipedream to reality
    October 17, 2019
    The UK government has suggested that driverless cars could be on the roads by 2021. But designers and engineers are grappling with a number of difficult issues, muses Chris Hayhurst of MathWorks Earlier this year, the UK government made the bold statement that by 2021, driverless cars will be on the UK’s roads. But is this an achievable reality? Driverless technology already has its use cases on our roads, with levels of autonomy ranked on a scale. At one end of the spectrum, level 1 is defined by th