Skip to main content

Virtual modelling shows driverless cars could cut delays in the future

Driverless cars could significantly reduce delays according to a new study by the Department for Transport (DfT). The project used computer software to create virtual models of different parts of the UK road network including urban roads and a 20km motorway section. Delays and traffic flow were all shown to improve as the proportion of automated vehicles increased above specific levels.
January 9, 2017 Read time: 2 mins

Driverless cars could significantly reduce delays according to a new study by the Department for Transport (DfT).

The project used computer software to create virtual models of different parts of the UK road network including urban roads and a 20km motorway section. Delays and traffic flow were all shown to improve as the proportion of automated vehicles increased above specific levels.

DfT believes the study demonstrates that driverless cars offer major potential benefits when the proportion of them on the road is higher than the proportion of older, more traditional vehicles.

It says the study is an important first step towards understanding the full range of complex effects of these technologies. It paves the way for further trials and research to help ensure the transition to driverless or automated vehicles is safe and beneficial for all.

The study examined different scenarios including the level of automation, the proportion of vehicles equipped with the technology and different automated driving styles. The main findings of the report included that, on major roads where traditional vehicles outnumbered automated vehicles benefits are relatively small, but increase as the percentage of driverless cars on the roads increases. When measuring peak traffic periods with a maximum of up to 100 per cent of driverless vehicles researchers saw journey times reduced by more than 11 per cent and delays cut by more than 40 per cent.

On urban roads benefits were seen in peak traffic periods even with low levels of automated vehicles on roads - benefits include a 12 per cent improvement in delays and a 21 per cent improvement in journey time reliability.

Related Content

  • February 3, 2012
    Germany's approach to adaptive traffic control
    Jürgen Mück, Siemens AG, describes the three-level approach taken in Germany to adaptive network control
  • November 23, 2018
    Cut freight deliveries – improve Southampton’s air quality
    Taking the pressure off cities’ road networks can have a beneficial effect on the environment. David Crawford looks at a new economic model which seeks to quantify the societal effect of freight traffic in Southampton, one of the UK’s five most polluted cities Cuts of 60% or more in volumes of freight deliveries are being predicted - along with badly-needed improvements in air quality - from a load consolidation scheme currently being introduced in the UK port city of Southampton. The forecasts are based o
  • January 20, 2012
    Adaptive control reduces travel time, cuts congestion
    Situated in San Diego County, California, the growing city of San Marcos has seen its population increase by 53.5 per cent since the turn of the century. Although this dramatic population increase has spurred economic growth bringing new business, homes and opportunities to the city, it has also increased traffic congestion along its central corridor, San Marcos Boulevard. This became the most congested arterial in the city, and, by 2006, the second-most travelled corridor in San Diego County.
  • May 6, 2015
    Countering congestion’s cost
    A new report on the economic costs of traffic congestion predicts the problem will worsen significantly in future. Jon Masters reviews the figures and some suggested solutions. New figures on the rising economic and environmental costs of congestion have been published by the US traffic data specialist Inrix and the UK’s Centre for Economics & Business Research (Cebr). Their report finds the problem much bigger than previously thought.