Skip to main content

Virtual modelling shows driverless cars could cut delays in the future

Driverless cars could significantly reduce delays according to a new study by the Department for Transport (DfT). The project used computer software to create virtual models of different parts of the UK road network including urban roads and a 20km motorway section. Delays and traffic flow were all shown to improve as the proportion of automated vehicles increased above specific levels.
January 9, 2017 Read time: 2 mins

Driverless cars could significantly reduce delays according to a new study by the Department for Transport (DfT).

The project used computer software to create virtual models of different parts of the UK road network including urban roads and a 20km motorway section. Delays and traffic flow were all shown to improve as the proportion of automated vehicles increased above specific levels.

DfT believes the study demonstrates that driverless cars offer major potential benefits when the proportion of them on the road is higher than the proportion of older, more traditional vehicles.

It says the study is an important first step towards understanding the full range of complex effects of these technologies. It paves the way for further trials and research to help ensure the transition to driverless or automated vehicles is safe and beneficial for all.

The study examined different scenarios including the level of automation, the proportion of vehicles equipped with the technology and different automated driving styles. The main findings of the report included that, on major roads where traditional vehicles outnumbered automated vehicles benefits are relatively small, but increase as the percentage of driverless cars on the roads increases. When measuring peak traffic periods with a maximum of up to 100 per cent of driverless vehicles researchers saw journey times reduced by more than 11 per cent and delays cut by more than 40 per cent.

On urban roads benefits were seen in peak traffic periods even with low levels of automated vehicles on roads - benefits include a 12 per cent improvement in delays and a 21 per cent improvement in journey time reliability.

Related Content

  • January 30, 2012
    Stepped speed limits improve workzone congestion and safety
    Traffic flow has been improved, congestion eased and safety increased - by a system of 'stepped speed limits' introduced to UK roadworks. URS Scott Wilson principal consultant Jamie Uff reports
  • February 27, 2017
    UK science centre gears up to become major driverless car test site following report’s findings
    A consortium led by services provider Amey and partners RACE, Oxbotica, Siemens and Westbourne Communications has published the findings of its research into public perceptions of driverless cars. The PAVE (People in Autonomous Vehicles in Urban Environments) project engaged with over 800 people face-to-face through exhibitions, street surveys and workshops with industry experts and 500 feedback forms were collected. The report, which was overseen by Westbourne Communications, indicates that most peop
  • July 15, 2014
    IEEE survey reveals driverless cars are the future
    IEEE has released the findings of a survey that revealed expert opinions about the future of driverless cars, from challenges to mass adoption, essential autonomous technologies, features in the car of the future, and geographic adoption. More than 200 researchers, academicians, practitioners, university students, society members and government agencies in the field of autonomous vehicles, participated in the survey. When survey respondents were asked to assign a ranking to six possible roadblocks to th
  • February 29, 2016
    Will driverless cars increase reliance on roads?
    Researchers warn that driverless vehicles could intensify car use, reducing or even eliminating promised energy savings and environmental benefits. Development of autonomous driving systems has accelerated rapidly since the unveiling of Google’s driverless car in 2012, and energy efficiency due to improved traffic flow has been touted as one of the technology’s key advantages. However, new research by scientists from the University of Leeds, University of Washington and Oak Ridge National Laboratory,