Skip to main content

Next generation safety technologies from Toyota

Toyota has revealed two new integrated safety systems designed to reduce the risk of pedestrian collisions and deliver safer driving in traffic, both of which will be brought to market in the next few years. Its auto-steering function for its pre-collision system (PCS) works in conjunction with automatic braking to help the driver avoid an impact, while its automated highway driving assist (AHDA) system keeps the car on an optimum driving line and a safe distance from the vehicle in front.
October 14, 2013 Read time: 3 mins
1686 Toyota has revealed two new integrated safety systems designed to reduce the risk of pedestrian collisions and deliver safer driving in traffic, both of which will be brought to market in the next few years.

Its auto-steering function for its pre-collision system (PCS) works in conjunction with automatic braking to help the driver avoid an impact, while its automated highway driving assist (AHDA) system keeps the car on an optimum driving line and a safe distance from the vehicle in front.

PCS uses an on-board sensor to detect a pedestrian in the vehicle's path. If it determines there is a collision risk, it triggers a warning light on the dashboard, immediately in front of the driver; if the likelihood of an impact increases, it sounds an alarm to warn the driver to take avoiding action and initiates pre-collision braking force and automatic braking.

If the system detects that a collision cannot be avoided by braking alone, and there is sufficient room for avoidance, it activates steer assist to direct the vehicle away from the pedestrian.

The AHDA system links two driving technologies to help secure safer driving and reduce the workload on the driver: co-operative-adaptive cruise control, which communicates wirelessly with vehicles ahead to maintain a safe distance; and lane trace control, which helps steer the vehicle on an optimal driving line within a traffic lane.

Co-operative adaptive cruise control uses 700-Mhz band vehicle-to-vehicle ITS communications to acquire acceleration and deceleration data from the vehicle ahead. This allows the speed of the following vehicle to be adjusted accordingly and better maintain an appropriate distance. By reducing unnecessary acceleration and deceleration, it improves fuel efficiency and helps reduce traffic congestions.

Lane trace control features brand new Toyota automated driving technologies. It uses high-performance cameras, millimetre-wave radar and control software to keep an optimum, smooth driving line within a traffic lane at all speeds, adjusting the vehicle's steering angle, driving torque and braking force when needed.

Ahead of trials on the Shuto Expressway near the Tokyo metropolitan area starting on 15 October, Toyota will exhibit AHDA at the 20th Intelligent Transport Systems World Congress Tokyo 2013 from 14 to 18 October.

To bring its new driving support systems to market as soon as practicable, Toyota is making use of new component technologies and know how gained through road testing using its advanced active safety research vehicle, based on a 4349 Lexus LS, unveiled last January at the International CES electronics show in Nevada.

For more information on companies in this article

Related Content

  • Bespoke ITS is helping to reduced collisions on America’s rural roads
    October 22, 2014
    David Crawford cherrypicks conference and award highlights Almost 30% of all US citizens live in rural areas or very small communities, and 34 of the 50 states exceed this level in their own populations, with the proportions rising as high as 85%. And although rural routes carry only 35% of all traffic, the accidents that occur on them account for some 54% of all US road traffic accident deaths.
  • ATRI seeks input on truck platooning
    November 25, 2014
    Working in collaboration with two FHWA-sponsored project teams, the American Transportation Research Institute (ATRI) is conducting research to explore trucking industry perspectives on the use of automated truck platooning, also known as Driver Assistive Truck Platooning. This concept is based on a system that controls inter-vehicle spacing based on information from forward-looking radars and direct vehicle-to-vehicle communications. Braking and other operational data is constantly exchanged between th
  • Study: Consumers do not understand vehicle safety features
    August 14, 2015
    A new study by the University of Iowa found that a majority of drivers expressed uncertainty about how many potentially life-saving vehicle safety technologies work. The survey also showed that 40 per cent of drivers report that their vehicles have acted or behaved in unexpected ways. The study, conducted by the University of Iowa Transportation and Vehicle Safety Research Division, examined drivers' knowledge of vehicle safety systems, as well as their understanding and use of defensive driving techniqu
  • Sensys Networks for critical traffic safety applications
    April 26, 2023
    Sensys Networks’ US supply chain qualifies for federal funding that favours key traffic safety applications. The company is here in Dallas to highlight how its products provide results around the world and point out that in the US, funding is set aside specifically to implement traffic safety solutions. The Infrastructure Investment and Jobs Act of 2021 provides an additional $32.5bn dedicated to traffic safety over five years.