Skip to main content

Moscow models traffic conditions in real-time

Moscow, which has to contend with heavy congestion on its arterial and ring roads during rush hour, relies heavily on its newly-implemented intelligent transportation system (ITS). At the heart of the system is PTV Group’s model-based PTV Optima, which delivers accurate traffic information in real-time and enables dynamic forecasting for a timescale of 60 minutes. PTV Optima collects, compares, validates and combines data from multiple sources to produce a coherent and detailed traffic picture. Using a comb
February 26, 2015 Read time: 2 mins
Moscow, which has to contend with heavy congestion on its arterial and ring roads during rush hour, relies heavily on its newly-implemented intelligent transportation system (ITS). At the heart of the system is 3264 PTV Group’s model-based PTV Optima, which delivers accurate traffic information in real-time and enables dynamic forecasting for a timescale of 60 minutes.

PTV Optima collects, compares, validates and combines data from multiple sources to produce a coherent and detailed traffic picture. Using a combination of real-time data, analytics and validated transport modelling, PTV Optima provides transport authorities with real-time traffic information for the entire road network. During the implementation in Moscow, emphasis was placed on the connection to the city's signal control systems which will help traffic managers to react flexibly to future traffic conditions through adaptive changes.

The model-based simulation approach relies on a physical interpretation of the traffic network and conditions, enabling even the effects of unexpected events, such as accidents or road works, to be forecast and the effects of alternative traffic management measures simulated in real-time.

In addition to real-time traffic monitoring and its map-based visualisation, the dynamic transport model of Moscow has a number of additional modules, including residency requirements and taxi occupancy rate, with the ability to send or create ‘heat maps’ in order to locate accident black spots on the transport network and eliminate their causes.

"PTV Optima is the key to successful traffic management," said Miller Crockart, vice president Global Sales and Marketing Traffic Software, PTV Group. "Our model-based approach is unmatched in its field. The additional functions make the Moscow ITS system unique."

For more information on companies in this article

Related Content

  • Moscow summit urges transit change
    June 11, 2019
    International ITS experts flocked to Russia for a new conference on the challenges of urban transit. Eugene Gerden reports from Moscow The Leaders in Urban Transportation Summit is a new international conference organised by the Moscow Department of Transport and Road Infrastructure Development. Dedicated to the latest developments in the field of ITS in the city of Moscow, it took place in the Moskva-Citi Business Center in April – and the intention is to make it an annual event. Senior transport o
  • Here: AI has place in ‘privacy by design’
    June 23, 2020
    Artificial intelligence may improve traffic in cities and keep location data private, but Here Technologies shows that it only takes four points of anonymous data to predict your identity.
  • Aimsun Live landmark deployment
    June 7, 2018
    Aimsun is here at ITS America in Detroit to showcase Aimsun Live, the simulation-based decision support for real-time traffic management that is going from strength to strength. After a successful 24x7 deployment on I-15 in San Diego, the company is announcing that Aimsun Live has been selected by Roads and Maritime Services in New South Wales state, Australia, as the decision support system for managing traffic on a 30-mile corridor for the Sydney M4 Smart Motorway Management System. This is a landmark
  • Estimating winter road recovery time with traffic data
    February 15, 2013
    In Minnesota, US, the most common measure for snow management performance is the time it takes to completely clear a roadway after a snow event ends. Currently, the Minnesota Department of Transportation (MnDOT) relies on visual inspections by its field crews to estimate this bare pavement recovery time. To help MnDOT more accurately and reliably estimate the performance of its snow management activities, researchers from the University of Minnesota Duluth (UMD) have developed a prototype process that uses