Skip to main content

Aimsun takes part in driver data study to improve C/AVs

Aimsun is taking part in a UK study which is using human driver data to help improve the performance and acceptability of connected and autonomous vehicles (C/AVs). The one-year project, Learning through Ambient Driving Styles for Autonomous Vehicles (LAMBDA-V), will also look at how driver behaviour can be analysed and used to accelerate the adoption of C/AVs. Aimsun says new rules for safer and more efficient driving behaviour could be created from existing vehicles, based on road laws and on how h
November 14, 2018 Read time: 3 mins

16 Aimsun is taking part in a UK study which is using human driver data to help improve the performance and acceptability of connected and autonomous vehicles (C/AVs).

The one-year project, Learning through Ambient Driving Styles for Autonomous Vehicles (LAMBDA-V), will also look at how driver behaviour can be analysed and used to accelerate the adoption of C/AVs.

Aimsun says new rules for safer and more efficient driving behaviour could be created from existing vehicles, based on road laws and on how humans drive in specific circumstances. Additionally, these could be ‘tuned’ by modelling how C/AVs and other vehicles behave in a mixed fleet.

LAMBDA-V is part of the UK government’s £22 million funding from the Centre for Connected and Autonomous Vehicles (CCAV) for projects to develop AVs.

CloudMade is providing machine learning and human driver behaviour modelling, while telematics and data specialist 497 Trakm8 will collate and analyse anonymised sample data from thousands of vehicles. Birmingham City Council will handle the legal duties associated with the project.

The initiative will assess a range of scenerios such as the likelihood of a human driver swerving to avoid a pothole and will look at how and when drivers apply brakes when entering a 30mph zone in a bid to better inform C/AV decision making.

James Brown, chief technology officer at CloudMade, believes being able to understand and model human behaviour is a critical element of humanising AVs and enabling personalisation of the vehicle.

“The CCAV grant will enable us to accelerate the development of solutions that learn individual driver behaviour and derive the necessary rule-sets and approaches to modelling and adaptation during the drive,” Brown adds.

LAMBDA-V will seek to understand the parameters needed for modelling human drivers and how to extend them to make vehicles rules, improving current technology and modelling impact to balance comfort, capacity and safety.

Also, the scheme will integrate vehicle maker and road operator perspectives in C/AV behaviour and examine how to develop privacy-law-compliant datasets for similar projects.

Aimsun believes benefits would include reduced unforeseen impacts on traffic, patents on rules for C/AVs, an improved understanding of early mixed fleet operation of human and automated vehicles and how to make early level self-driving vehicles attractive to users. Highway authorities and vehicle makers could also obtain an improved understanding of how to deploy C/AVs in a range of real-world roads.

For more information on companies in this article

Related Content

  • Cross-border enforcement close to becoming a reality
    February 2, 2012
    TISPOL Director Ad Hellemons offers the organisation's perspective on the issue of cross-border enforcement of traffic penalties, the progress that has been made and the potential hurdles yet to be overcome
  • Multimodal simulation helps to improve the airport experience
    December 15, 2022
    The vision of the IMHOTEP project is a multimodal European transport system, where different modes of travel are seamlessly integrated to give passengers a great door-to-gate and gate-to-door experience. Marcel Sala, scientific researcher at Aimsun, explains how this works at airports
  • Goggo & Oxbotica drive AV logistics in Spain
    March 23, 2023
    Full autonomy is eventual plan as Goggo Network works with retailers such as Carrefour
  • New ANPR solutions overcome variables
    May 18, 2018
    The sheer range of variables makes it difficult to find a single algorithm to ensure a 100% standard of ANPR. David Crawford investigates new processing technology. Automatic number plate recognition (ANPR), using optical character recognition and image-processing to identify vehicles, plays key roles in traffic monitoring and law enforcement, access and parking control, electronic toll collection, vehicle security and crime deterrence. Overall, system performance is well rated, with high levels of