Skip to main content

TfL expands SCOOT adaptive traffic management

Microsimulation traffic modelling has supported a further roll-out of SCOOT adaptive traffic signal control in London, demonstrating a 13% reduction in travel delays. Development of a cost-effective traffic modelling system has led to a further major roll-out of SCOOT adaptive traffic management technology in London, says traffic and software programme director Gavin Jackman of UK transport consultancy TRL. The roll-out of SCOOT at 600 additional intersections, now at its midpoint, is a central plank in the
January 14, 2013 Read time: 3 mins

Microsimulation traffic modelling has supported a further roll-out of SCOOT adaptive traffic signal control in London, demonstrating a 13% reduction in travel delays.

Development of a cost-effective traffic modelling system has led to a further major roll-out of SCOOT adaptive traffic management technology in London, says traffic and software programme director Gavin Jackman of UK transport consultancy 491 TRL.

The roll-out of SCOOT at 600 additional intersections, now at its midpoint, is a central plank in the Mayor of London’s policy objective of smoothing traffic flows to meet 1466 Transport for London’s (TfL) network management duty under the UK’s 2004 Traffic Management Act. At the same time, the use of more responsive and versatile traffic control is seen as making an important contribution to the reduction of emissions and pollutants – another policy priority. Previous experience in targeting these goals was already indicating the need for further deployment of SCOOT in London, where it has been replacing previous fixed-time installations since 1985.  

Low cost evaluation

But TfL first wanted cost-effective quantification of the benefits. “Such confirmation typically emerges from local evidence. But the high cost of on-street trials can be a deterrent to the necessary research,” Jackman told an IBEC (International Benefits, Evaluation & Costs) working group session held at the October 2012 6456 ITS World Congress in Vienna.

Cost saving:

• Modelling around 15% of cost of on-street trials.

Benefits:

• Average 12.84% saving in travel time delays.

• Average 04.6% saving in number of vehicle stops.
Experience suggested that modelling was likely to come out at around 15% of the on-street cost. To meet the challenge, TRL developed a model with an urban traffic control 3989 Vissim microsimulation interface, connecting SCOOT to multi-modal traffic flow simulation software developed by German company 3264 PTV Planung Transport Verkehr AG. This modelled three traffic management scenarios for comparison: fixed time; SCOOT; and SCOOT raised cycle time. It modelled four traffic flow scenarios: existing flow; flow increased by 10%; flow increased by 20%; and flow affected by incidents. Three outputs were produced: vehicle delays; stops; and emissions. The modelling was based on two busy central London intersections where existing microsimulation models and SCOOT were available – Victoria and Tavistock Place.

Results validated

Over a typical five-hour weekday morning peak period, the model predicted savings in both locations of 100l of fuel consumed and 236kg of CO2 emitted. Vehicle stops and delays both reduced with SCOOT being activated. The results are shown in Tables 01 and 02. The emissions results are as in Tables 03 and 04.

Table 01: Base flow SCOOT benefits

  Reduction in delays %  
Reduction in stops %
Victoria
11-16
10-17
Tavistock Place
08-09
06-25
(all scenarios)
   



Table 02: Incident flow SCOOT benefits

  Reduction in delays %  
Reduction in stops %
Victoria
12
10
Tavistock Place
14 8

Table 03: Base flow emissions reductions
  Reduction in NOx%  Reduction in PM% 
Reduction in Carbon%
Victoria
8
5 6
Tavistock Place
3 1
3

Table 04: Incident flow emissions reductions

  Reduction in NOx%  Reduction in PM% 
Reduction in Carbon%
Victoria
9
6
7
Tavistock Place
7
3
8

The models predicted annual user benefits, per junction, of between £89,200 and £107,100, with an overall user benefit in the first year, per node, of £90,000 (2009 value of time) excluding vehicle operating costs and the social cost of carbon reductions.
The modelling results have been validated and show that overall, across the 600 junctions, SCOOT is delivering an average 12.84% reduction in delays and 4.6% reduction in the number of times that vehicles have to stop as they travel through the network.

SCOOT (Split Cycle Offset Optimisation Technique), developed by TRL and now jointly owned by TRL, Peek and 189 Siemens, is deployed in most major urban centres in the UK and over 250 cities worldwide. It was voted most transformative network management tool at 136 Traffex 2011 in a poll of transport community members.


For more information on companies in this article

Related Content

  • Cracking the congestion code
    June 10, 2025
    ANPR is the unsung hero of decarbonisation, says Debbie Zeng of Milesight
  • ITS homes in on cycling safety
    April 9, 2014
    A new generation of ITS equipment is helping road authorities get to grips with cycle safety – and not a moment too soon as Colin Sowman discovers. Cyclists - remember them? Apparently not. At least not according to the OECD 2013 report Cycling, Health and Safety which contains the statement: ‘Cyclists are often forgotten in the design of the road traffic system’. Looking through the statistics that exist (each country appears to compile them differently) it is not difficult to see how such a conclusion cou
  • Benefits of Florida's traffic signal retiming
    November 7, 2012
    Lee County in Florida has consolidated dramatic results of a major traffic signal retiming with installation of advanced monitoring and management technology for generating further benefits. The Lee County Department of Transportation (DOT), in the US State of Florida, has completed retiming of traffic signals for over 50 intersections in the cities of Fort Myers and Bonita Springs. The project aimed to evaluate existing operations and enable adjustments to optimise flows, and has produced dramatic results
  • Trials show fuel savings with connected vehicle technology
    December 16, 2015
    American and European trials point to fuel and emissions reductions. A trial by University of California-Riverside (UC-Riverside) has shown connected vehicle technology has the potential to reduce fuel consumption (and therefore emissions) by up to 18% compared with an uninformed driver.