Skip to main content

TfL expands SCOOT adaptive traffic management

Microsimulation traffic modelling has supported a further roll-out of SCOOT adaptive traffic signal control in London, demonstrating a 13% reduction in travel delays. Development of a cost-effective traffic modelling system has led to a further major roll-out of SCOOT adaptive traffic management technology in London, says traffic and software programme director Gavin Jackman of UK transport consultancy TRL. The roll-out of SCOOT at 600 additional intersections, now at its midpoint, is a central plank in the
January 11, 2013 Read time: 3 mins

Microsimulation traffic modelling has supported a further roll-out of SCOOT adaptive traffic signal control in London, demonstrating a 13% reduction in travel delays.

Cost saving:

• Modelling around 15% of cost of on-street trials.

Benefits:

• Average 12.84% saving in travel time delays.
• Average 04.6% saving in number of vehicle stops.

Development of a cost-effective traffic modelling system has led to a further major roll-out of SCOOT adaptive traffic management technology in London, says traffic and software programme director Gavin Jackman of UK transport consultancy 491 TRL.

The roll-out of SCOOT at 600 additional intersections, now at its midpoint, is a central plank in the Mayor of London’s policy objective of smoothing traffic flows to meet 1466 Transport for London’s (TfL) network management duty under the UK’s 2004 Traffic Management Act. At the same time, the use of more responsive and versatile traffic control is seen as making an important contribution to the reduction of emissions and pollutants – another policy priority. Previous experience in targeting these goals was already indicating the need for further deployment of SCOOT in London, where it has been replacing previous fixed-time installations since 1985.  

Low cost evaluation

But TfL first wanted cost-effective quantification of the benefits. “Such confirmation typically emerges from local evidence. But the high cost of on-street trials can be a deterrent to the necessary research,” Jackman told an IBEC (International Benefits, Evaluation & Costs) working group session held at the October 2012 6456 ITS World Congress in Vienna.

Experience suggested that modelling was likely to come out at around 15% of the on-street cost. To meet the challenge, TRL developed a model with an urban traffic control 3989 Vissim microsimulation interface, connecting SCOOT to multi-modal traffic flow simulation software developed by German company 3264 PTV Planung Transport Verkehr AG. This modelled three traffic management scenarios for comparison: fixed time; SCOOT; and SCOOT raised cycle time. It modelled four traffic flow scenarios: existing flow; flow increased by 10%; flow increased by 20%; and flow affected by incidents. Three outputs were produced: vehicle delays; stops; and emissions. The modelling was based on two busy central London intersections where existing microsimulation models and SCOOT were available – Victoria and Tavistock Place.

Results validated

Over a typical five-hour weekday morning peak period, the model predicted savings in both locations of 100l of fuel consumed and 236kg of CO2 emitted. Vehicle stops and delays both reduced with SCOOT being activated. The results are shown in Tables 01 and 02. The emissions results are as in Tables 03 and 04.

Table 01: Base flow SCOOT benefits
  Reduction in delays % Reduction in stops %
Victoria
11-16 10-17
Tavistock Place
(all scenarios)
08-29 06-25

Table 02: Incident flow SCOOT benefits
  Reduction in delays % Reduction in stops %
Victoria 12 10
Tavistock Place 14  8

Table 03: Base flow emissions reductions
  Reduction in NOx% Reduction in PM%
Reduction in Carbon%
Victoria 8 5
6
Tavistock Place 3 1 3

Table 04: Incident flow emissions reductions
  Reduction in NOx% Reduction in PM% Reduction in Carbon%
Victoria   
9 6 7
Tavistock Place 7 3 8

The models predicted annual user benefits, per junction, of between £89,200 and £107,100, with an overall user benefit in the first year, per node, of £90,000 (2009 value of time) excluding vehicle operating costs and the social cost of carbon reductions.

The modelling results have been validated and show that overall, across the 600 junctions, SCOOT is delivering an average 12.84% reduction in delays and 4.6% reduction in the number of times that vehicles have to stop as they travel through the network.

SCOOT (Split Cycle Offset Optimisation Technique), developed by TRL and now jointly owned by TRL, Peek and 189 Siemens, is deployed in most major urban centres in the UK and over 250 cities worldwide. It was voted most transformative network management tool at 136 Traffex 2011 in a poll of transport community members.


For more information on companies in this article

Related Content

  • Iomob: Tech can help us make better transport choices
    January 24, 2023
    Tired of ‘greenwashing’? Maybe it’s time for the transport sector to think differently, and more ambitiously, about how to encourage greener modal shift, suggests Adrian Ulisse of Iomob
  • Transport technology transforming bus stops in Los Angeles
    January 20, 2012
    David Crawford reports on a pioneering blend of transport technology and aesthetic By gaining a design award before installation has even started, the US$6.9 million City of Santa Monica (California)'s Big Blue Bus Shelter and Branding Package has ensured early interest among what it expects to be a new wave of transit riders. The American Institute of Architects' Los Angeles chapter's recently conferred 'Next LA Citation Award for Architecture', given for design excellence in projects as yet unbuilt, comm
  • ITS World Congress examines challenges of autonomous vehicles?
    December 11, 2015
    The 2015 ITS World Congress opening ceremony saw PSA Peugeot Citroën executives arrive in an autonomous vehicle, so the International Benefits, Evaluation and Costs (IBEC) Working Group’s dedicated session proved very timely.
  • US eyes European model for Illinois toll road upgrade
    May 30, 2014
    David Crawford welcomes the adoption of European-style ITS technology by the US. The Jane Addams Memorial Tollway in Illinois, US is well on the way towards becoming a ‘smart traffic corridor’, taking full advantage of active traffic management (ATM or ‘managed lanes’) technology that originated in Europe. It is one of the first American toll roads to do so; preliminary work began in 2014 and will continue through to 2016. Jane Addams is one of four toll roads operated by the publicly-owned Illinois State T