Skip to main content

SRL’s temporary permanent traffic solution

The lengthy reconfiguration of a London accident hotspot to make it safer risked creating its own safety problems. SRL’s John Cleary tells Adam Hill how his firm has been protecting VRUs
By Adam Hill March 30, 2021 Read time: 3 mins
SRL’s Urban64 in action at London’s Old Street roundabout redevelopment

Covid-19 has brought the safety of cyclists and pedestrians into sharp relief as more road space worldwide has been given over to both – and a project which started pre-pandemic shows how technology can help vulnerable road users (VRUs) as traffic configurations change.

In London, UK, a busy roundabout by Old Street underground station used to be a collision hotspot. Four pedestrian subways leave the station and cyclists make up almost a third of all vehicles using the area – so it is no surprise that accidents there involved cyclists or pedestrians.

Change came in the form of a plan to close the north-western arm of the roundabout, creating a new peninsula space with the existing central island, and introducing a two-way signal-controlled layout. In essence it will be a U-shaped two-way flowing system, a gyratory more than a roundabout. New cycle lanes and crossings are being created, some segregated from vehicles with cycle-only signals to increase safety.

So far, so good. But since it started in May 2019 and is due to be finished in summer 2021, a long-term temporary solution for controlling cyclist, traffic and pedestrian movement was required during the transformation: step forward, SRL’s Urban64 solution.

A technology system using components from Swarco and Dynniq among others, its selling point is that it incorporates complex permanent traffic signals facilities - most notably low-level cycle signals - in a temporary layout. “It’s the only temporary traffic light system with permanent technology,” says John Cleary, MD of Urban64. “There is no other intelligent, temporary system - it’s the only system that can replicate a permanent controller.”

Truck danger

SRL worked with signal engineering and design expert Red Wilson Associates to create multiple temporary layout designs and methods of control, using intelligent thermal cameras to detect dedicated cycle phases.

In the UK, traffic drives on the left-hand side of the road. “The whole issue with danger around cyclists is trucks not seeing cyclists to their left,” Cleary explains. “All of a sudden the trucks turn left, and the cyclist is completely in the way.”

To combat this clear and present danger, various phases were configured. These included hold-the-left-turn (where ahead/left-turning cyclists and left-turning general traffic are separately signalled); early release (cyclists receive a green signal ahead of other traffic); two-stage turns (enabling cyclists to wait between signal phases and therefore avoid turning in conflict with other traffic); cycle gates (cyclists proceed from a ‘reservoir’ ahead of other traffic in both time and space, and are held while general traffic proceeds); and bus stop bypass crossings (a segregated cycle track running through the bus stop area behind the shelter, thus creating an island for passengers boarding the bus and alighting at the stop).

The other options for traffic control would have been a portable traffic light system with basic technology – which cannot do cycle phases - or ‘poles in barrels’, the traditional method of chopping off the permanent signal pole, putting it into a concrete base and moving it around the site as and when you need to change the lanes.

The latter approach was not feasible because the existing road layout was simply too different to the redesigned version. “The cabling across the road with the position of the existing infrastructure, the existing traffic signal equipment, was not in the correct location, so it would have been an absolute nightmare to maintain that cabling in the ground,” Cleary continues.

“In addition, they were changing it a lot: they were adding cycle phases to Old Street roundabout that weren’t there [previously].” In a sense this meant moving ahead to the final construction phase – but using temporary layouts. Cleary acknowledges that this could have been achieved without Urban64 but he thinks it would not have been safer “and they probably wouldn’t have had the complexity of traffic control”.

For more information on companies in this article

Related Content

  • Priority boosts ridership and cuts congestion
    May 4, 2016
    Transit priority is proving a win-win in Europe and Australia. David Crawford reports. Technology that integrates with the Australian-originated Sydney Coordinated Adaptive Traffic System (SCATS) is driving bus signal priority and performance analysis initiatives on both sides of the world; in its homeland, with a major deployment in 2015, and in the capital of the Republic of Ireland.
  • Making cars safer for vulnerable road users
    June 2, 2016
    Richard Cuerden considers measures to improve the safety of vulnerable road users. The competitive nature of the car market has seen an increase in protection for those travelling inside the vehicle and this is reflected in the casualty statistics -but the same does not apply to those outside the vehicle. And with current societal trends such as ageing populations, an increasing number of pedestrians and cyclists encouraged by environmental policies, this is an area that authorities such as the European Uni
  • ProPart AV trial crosses the line
    March 25, 2020
    The perceived safety benefits of autonomous vehicles can only be realised with precise positioning. Ben Spencer reports from Sweden on work by a European consortium which aims to use the technology to allow a truck to carry out an automated lane change
  • Radar reinforces detection efficiency
    March 16, 2016
    Radar can have distinct advantages in some transport-related situations as Colin Sowman found out during a visit to Navtech Radar. Despite tremendous advances in machine vision techniques, the accuracy and reliability of camera-based detection systems suffer during periods of poor visibility where other technologies may offer an alternative. Radar is one such technology. It too has seen significant development in recent years and according to Navtech Radar, the technology can often fulfil detection and moni