Skip to main content

Road space utilisation improves travel times, reduces costs

For major road works schemes, necessary lane closures are timed to minimise congestion, most frequently at night and on weekends when traffic is at its lightest. As a result, rigid timetables are used in planning, programming and implementing work. In the UK, to calculate the expected traffic demand through roads works, historic profiles from the loop-based MIDAS (Motorway Incident Detection Automatic Signalling) system were used. These provided a valuable indicator of anticipated traffic behaviour but were
February 1, 2012 Read time: 4 mins
Optimal lane closure time are provided by a Web-enabled PDA

For major road works schemes, necessary lane closures are timed to minimise congestion, most frequently at night and on weekends when traffic is at its lightest. As a result, rigid timetables are used in planning, programming and implementing work.

In the UK, to calculate the expected traffic demand through roads works, historic profiles from the loop-based MIDAS (Motorway Incident Detection Automatic Signalling) system were used. These provided a valuable indicator of anticipated traffic behaviour but were limited as they are only a prediction based on historical experience.

To overcome this limitation and to improve the accuracy of the MIDAS system, 491 TRL, in collaboration wth 2002 Costain and MTS (2003 Mobile Traffic Solutions) developed DRUM (Dynamic Roadspace Utilisation Manager), a traffic management system for road works based on real-time traffic information. This allows for lane closures to begin earlier and finish later, when the conditions are right.
It maximises the time available for lane closures and increases carriageway capacity through road works which has implications for journey time reliability as well as environmental benefits derived from fewer traffic queues and thus CO2 emissions.
Project:
• Dynamic lane closures during roadworks
Cost:
• US$75,000
ROI:
• US$385,000
Benefits:
• Allows contractors to work more flexibly, efficiently, and cost effectively
• Improved journey time reliability
• Reduced queuing
• Reduced CO2 emissions

In 2008, DRUM's use on the M25 (Dartford Widening Scheme) and M27 (J11-J12) allowed road works to be completed some 25 per cent faster when compared to roadworks programmed and implemented using traditional methods. This gave a cost benefit return of a minimum of 4.5 times its deployment cost.

How it works

To improve the accuracy of the MIDAS system, it was recognised that the strength of the prediction model could dramatically be enhanced by comparing predicted flow levels with the real-time flow.

To collect this data, TRL teamed up with MTS using its T-25, a mobile power source trailer with an 8m telescopic mast. An environmentally friendly solar-recharged system, the T-25 is suitable for multiple applications including traffic counting, CCTV and ANPR.

Mounted on the telescopic mast is a 148 Wavetronix SmartSensor HD non-intrusive side-fired microwave radar. This effective live tool provides a 10-lane dual-directional capability with over 96 per cent of accuracy, capturing live data from within the road works. A selflearning algorithm constantly corrects for the effects on flow of the road works themselves, such as commuters altering their routes to avoid the road works, and over time becomes increasingly accurate.

The system architecture turns the collected data into a useable tool which provides a dynamic timetable of optimal closure times. Traffic and planning managers are then able to view this information via a Webenabled PDA or standard PC with internet connection. Access to this dynamic information removes the limitations of restricting road works' closures to set times, which are costly to the highways industry in terms of missed opportunities and less effective programme management.

M61 experience

Last year, DRUM was deployed on the M61 motorway improvements scheme between Junctions 3 and 4.

Prior to this, lane closures were undertaken in accordance with a Lane Prohibition Plan (LPP) to minimise congestion resulting from lane closures.

To quantify the benefits arising from DRUM's deployment, a simple comparison was undertaken by recording actual working times against those that would have been available if working in accordance with the LPP.

DRUM was fully operational between the end of May 2009 and the second week in September 2009, and a record was made during each shift for each carriageway. This record detailed when DRUM indicated lane closures could be implemented, when the LPP would have allowed lane closures, and the actual hours lane closures were installed.

The data revealed that DRUM provided opportunities to work extra and longer shifts than would have been permitted by the LPP, particularly in the evenings and during the day at weekends. The latter proved to be a major benefit to the scheme, allowing closures to remain in place throughout each weekend. This enabled extra shifts to be put on and works which benefited from continuous shifts or daytime working to be programmed for completion at a weekend.

Analysis of the records revealed a US$385,000 saving provided by DRUM as against the LLP, which was achieved through enabling the contractor to work more flexibly, efficiently and cost-effectively.

For more information on companies in this article

Related Content

  • CRASH Predicts ‘unpredictable’ in traffic incidents
    November 11, 2015
    Road crashes are not as random as they may appear and analysing data can reveal patterns that can help various authorities target their resources more accurately. David Crawford reports. Figures from the US National Highway Traffic Safety Administration (NHTSA) show that in 2013 there were 32,719 people killed on American roads and 2.31 million injured. While these form part of an overall 25% drop over the decade from 2004, US Transportation Secretary Anthony Foxx continues to stress that reaching the procl
  • Cost benefit: Toronto retimings tame traffic trauma
    July 11, 2018
    Canada’s largest city reckons that it is saving its taxpayers’ money simply by altering the way traffic lights work. David Crawford reviews Toronto’s ambitious plans to ease congestion. Toronto, Canada’s largest metropolis (and the fourth largest in North America), has saved its residents CAN$53 (US$42.4) for every CAN$1 (US$0.80) spent over a 2012-2016 traffic signal retiming programme, according to figures released by its Transportation Services Division. The programme covered 1,275 signals (the city’s to
  • New technology revolution in urban traffic control?
    January 26, 2012
    Urban traffic control is a well-defined and practised art. Nevertheless, there are technologies here and on the horizon with the potential to revolutionise how we do things. By Gavin Jackman and Andrew Kirkham, TRL, and Jason Barnes. Distributed monitoring and control of urban traffic networks and flows is nothing new. PC-based Urban Traffic Control (UTC) is now well established and operating in many locations around the world. However, it is worth considering the effects of the huge growth in the use of sm
  • Data revolution in real time travel information
    February 3, 2012
    Damian Black, CEO and founder of SQLstream Inc, writes about relational stream processing for real-time intelligent transport systems Almost unnoticed there is a revolution going on in Internet data which is different from anything seen before. It is taking place in sensor data, which research organisation Gartner predicts in 2012 will exceed 20 per cent of all non-video Internet traffic.