Skip to main content

Real time traffic control aids travel time reduction

An IBEC working group session at ITS World Congress in Vienna in October was presented with an example of a very cost-effective means for reducing traffic travel time. There is no doubt that adaptive real-time traffic control is a very cost-effective ITS application”, Dr Ronald van Katwijk told an IBEC (International Benefits, Evaluation & Costs) working group session at the 2012 ITS World Congress in Vienna. The senior consultant with Netherlands consultant TNO and TrafficQuest, the Dutch Centre for Expert
January 11, 2013 Read time: 4 mins

An IBEC working group session at ITS World Congress in Vienna in October was presented with an example of a very cost-effective means for reducing traffic travel time.

Benefits:

• €373,554 (US$478,337) per five intersections annum of driving time savings based on the modelled peak hour exercise.

• Movement-based adaptive control improves intersection performance without increasing computational requirements.
There is no doubt that adaptive real-time traffic control is a very cost-effective ITS application”, Dr Ronald van Katwijk told an IBEC (International Benefits, Evaluation & Costs) working group session at the 2012 6456 ITS World Congress in Vienna. The senior consultant with Netherlands consultant 7087 TNO and TrafficQuest, the Dutch Centre for Expertise in Traffic Management, said over 85% of the country’s controlled intersections currently have traffic-actuated systems, using a movement-based approach.

This means that, although groups of signals are structured in stages, they can be controlled separately. This level of flexibility is necessary given the large number of separately controlled movements needed to manage the country’s changing multi-modal traffic flows (see Table 01). 

The disadvantage is that traffic-actuated systems use historic information to determine crucial parameters, such as maximum time and sequencing of green phase and coordination of offsets between intersections. Past experience does not guarantee the quality of future results, stressed van Katwijk. In addition, traffic-actuated systems suffer from ‘tunnel vision’ (when a green phase is extended for a movement without taking into account demand for other conflicting ones) and ‘near-sightedness’ (when a green phase is ended as soon as it has served current demand, even though a platoon of traffic might be approaching).

Table 01. The changing modal split in Amsterdam
Period               
Car %              
Public transport %  
Bicycle %
1986-1991 39 28 33
2005-2008 31 22 47

Problems addressed

The situation can be improved, he suggested, by using a system equipped to take the entire intersection into account (counteracting tunnel vision); consider future or pending arrivals (counteracting near-sightedness); and make short-term decisions on the basis of longer-term analysis that considers all available alternatives in detail.

Traffic-adapted systems in the Netherlands face the central problem of – given the large number of separately-controlled movements – how to come up with an optimal solution in real-time. To address this, TNO has carried out a number of modelling exercises, applying a traffic adaptive control algorithm tailored to Dutch movement-based control practice to a diverse range of intersection and demand configurations.

An illustrative example presented at Vienna covered a 1.3km stretch of road with five intersections. The modelling took place over a two-hour peak period. The results, in terms of time savings through successive junctions, appear in Table 02.

Table 02. Results of the modelling exercise
Intersection
Travel time -
current
Travel time -
new (seconds)
Reduction
K362
166658
136268 18%
K329
361209
283943
21%
K330
483359
368995
24%
K331
313973
266731
15%
K332
460170
159176 19%

These results lead to the following calculation of savings over a year. The current total driving time spent by all drivers over the entire network during one hour of the two-hour period is 228.89 hours. Taking the relative benefit over the network modelled, as compared with the currently operating control system, as a conservative 17% gives an absolute benefit in each hour of driving of 38.91 total hours.

Assuming a four-hour total daily peak traffic period gives an absolute benefit per working day of 155.65 driving hours saved (31,130 per year of 200 working days). An average valuation of €12.00 (US$15.37) per hour produces annual savings of €373,554 (US$478,337).

Best of both worlds

Comments van Katwijk: “Adaptive real-time control systems look forward in time (taking into account predicted arrivals) as opposed to traffic-actuated ones which are tuned on the basis of historical information. Most adaptive real-time control systems, however, can only optimise the sequence and duration of stages, not each traffic movement. Our approach represents the best of both worlds.

“There is a lot to be gained by looking forwards instead of backwards when determining the signal timings of an intersection. But this is computationally demanding, given real-time constraints, requiring investments in detection and computing hardware. Movement-based adaptive control significantly improves an intersection’s performance without further increasing the computational requirements.”

For more information on companies in this article

Related Content

  • Cost-effective alternatives to traditional loops
    February 1, 2012
    Traffic signal control is a mainstay of urban congestion management. Despite advances in vehicle detection sensors, inductive loops, which operate by using a magnetic field to detect the metal components in vehicles, are still the most common enabler for intelligent signalised junctions.
  • IBEC: Busy time for new secretariat
    August 12, 2015
    IBEC, the International Benefits, Evaluation and Costs working group for ITS, has a new secretariat in the ERTICO/ITS Europe offices in Brussels, with Paul Kompfner, ERTICO head of smart urban mobility, as secretary. An early priority is a more dynamic website, offering better communications channels for news and encouraging wider dialogue and collaboration.
  • Automating enforcement of environmental zones
    July 27, 2012
    Amsterdam City Council has chosen to move away from manual enforcement of its environmental zone, which is intended to keep highly polluting goods vehicles out of the city centre, and is installing an automated, ANPR-based system. The signs are not much to look at: white with a red circle and the all-important word Milieuzone ('Environmental zone'). But these signs mean that Amsterdam's city centre is strictly off-limits to polluting goods traffic. At the moment compliance is monitored by special wardens wh
  • Toll performance exceeds expectations, improves travel times
    January 30, 2012
    Jean Harito, Attica Tollway Operations Authority and Steve Morello, Egis Projects describe how looking to exceed contractual obligations makes good operational and business sense. The Attica Tollway is a modern, 65km, access-controlled urban motorway with three lanes in each direction. It constitutes the ring road around the extensive metropolitan area of the Greek capital, Athens, and forms the backbone of the entire road network in the Attica region. By ensuring freeflow operating conditions, the Attica T