Skip to main content

Innovative traffic information system

From the roadside James Foster compiles some eye-catching news, deployments and product picks from the work zone
January 31, 2012 Read time: 3 mins
"We put a high emphasis on minimising the inconvenience to the travelling public"

From the roadside James Foster compiles some eye-catching news, deployments and product picks from the work zone

1904 Utah Department of Transportation (UDOT) and contractor, Provo River Constructors (Fluor, Ames Construction, 1905 Ralph L. Wadsworth Construction, Wadsworth Brothers Construction joint venture), partnered with 139 Transcore to develop an innovative approach to provide real-time arterial traffic information during the I-15 Corridor Expansion (I-15 CORE) and minimise traffic delays for local motorists. The system extends the concept and success of freeway management travel time systems to the arterial roadways during construction.

UDOT began a US$1.725 billion project last April, the largest roadway project in the state's history, to widen and rebuild some 39km of I-15 in Utah County nearly 50km south of Salt Lake City. The I-15 CORE project is currently 30 per cent complete and on schedule for its December 2012 deadline. The project is an important investment to restore aging infrastructure, address long-term transportation needs, and improve the movement of goods and services throughout the state in one of the state's fastest-growing counties.

Because the project will span more than two years and there is no other freeway system in the county apart from I-15, the project leaders knew there would be significant effects on traffic on the local streets.
Eric Rasband, UDOT I-15 CORE traffic and maintenance of traffic manager: "We put a high emphasis on minimising the inconvenience to the travelling public. Under a competitive bidding environment, our contractor, PRC, looked for an opportunity to improve mobility on local roads throughout construction as a value-add in their overall traffic management proposal. PRC asked 139 Transcore to design and construct a traffic management system that extends the concept and success of freeway management travel time systems to the arterial roadways during construction and one that will continue to help drivers make informed choices when the freeway reconstruction is complete."

The travel time application designed by TransCore includes the installation of a monitoring system along US 89 and connector routes to I-15, which uses anonymous vehicle data obtained from 119 Sensys Networks travel time detectors. This data is used to measure actual traffic flow conditions. The information is then fed directly to TransCore's TransSuite software to automatically update roadway Trailblazer signs with current travel time information. This system also feeds information directly into the Utah CommuterLink website to allow motorists access to information before their trips begin.
Nine Trailblazer signs placed on the roadside include a hybrid display that combines a static message with a dynamic insert that incorporates real-time data. The small size of the sign allows for placement in areas with little or no need for the acquisition of right of way. Motorists are directed to take the least congested routes - either I-15 or US 89 - which leads to a reduction in delays, stops, emissions and the number and severity of traffic incidents.

An accelerated schedule of six months for design, construction and software development allowed the Trailblazer project to come to fruition in time to provide a positive impact for the remainder of I-15 CORE construction and into the future.

According to UDOT, the Trailblazer signs are unique as they compare local road travel times versus freeway travel times. Other signs like these in Utah show freeway travel times only. This system does not just provide an immediate benefit to traffic management during the I-15 CORE project: the installations will be left in place once construction has been completed, becoming a legacy product to enhance regional mobility.

Related Content

  • TransCore wins Virginia ATM contract
    April 23, 2013
    The Virginia Department of Transportation (VDOT) has selected TransCore to design and build its I-66 ATM (Active Traffic Management) system on northern Virginia’s main highway into the District of Columbia - one of Virginia’s most congested interstates.
  • Hard shoulder running aids uniform traffic flow and safer driving
    January 23, 2012
    David Crawford detects a market for European experience. Well-established now in at least three European countries, Hard Shoulder Running (HSR) on motorways is exciting growing interest in the US. A November 2010 Report to Congress by the Federal Highway Administration (FHWA), on the Efficient Use of Highway Capacity, notes the role of HSR in the European-style Active Traffic Management (ATM) strategies now being recommended for implementation in the US where, until recently, they were virtually unknown.
  • Preparing for unpredictable precipitation
    August 18, 2015
    ITS solutions are helping streamline winter road maintenance for Delaware and Illinois, two states that must deal with dynamic weather and varying snowfall totals. Andrew Bardin Williams reports. Wilmington and Newark (pronounced new-ark) are two vastly different cities that sit on opposite ends of Delaware. Newark is a sleepy university town of roughly 30,000 residents abutting the state’s western border with Maryland and Pennsylvania, and often gets confused with its larger namesake in New Jersey.
  • Affordable and versatile traffic data
    January 20, 2012
    Houston TranStar, which has been collecting travel time and segment speed data using vehicle probe data since 1995, has an extensive coverage area that envelops most local commuters' daily freeway routes. However, expanding the existing Automated Vehicle Identification (AVI) system would be cost-prohibitive except for high-volume freeways. The partners of the Houston TranStar consortium needed a new method to measure speeds and travel times on arterial roadway systems and rural freeways. Instead of using co