Skip to main content

Advanced controllers standing out in A crowd

TransCore has been helping New York City’s Department of Transportation (NYDOT) with its ITS efforts since the early 1980s, via various consultancy services contracts. The company is currently working for the city under an IDIQ (indefinite quantity) contract and a separate ITS maintenance contract. According to TransCore vice president Bob Rausch, who has witnessed much of New York’s ITS development, the three main ‘building blocks’ of the city’s ITS infrastructure have developed simultaneously over recent
February 28, 2013 Read time: 3 mins
Peek Traffic advanced solid state traffic controller: 10,000 have been procured so far and all 12,000 intersections will be  fitted out eventually

TransCore has been helping New York City’s Department of Transportation (NYDOT) with its ITS efforts since the early 1980s, via various consultancy services contracts. The company is currently working for the city under an IDIQ (indefinite quantity) contract and a separate ITS maintenance contract.

According to 139 Transcore vice president Bob Rausch, who has witnessed much of New York’s ITS development, the three main ‘building blocks’ of the city’s ITS infrastructure have developed simultaneously over recent years.

The city’s Traffic Management Centre in Queens is undoubtedly a key part of the operation. NYCDOT’s operations staff are based there, with the software systems for monitoring and managing the city’s streets; and sharing the facility with the New York City Joint Traffic Management Centre.

The NYCWiN wireless network is also a vital development of recent times. This has provided a massive uplift in connectivity and capability for the city. It has also allowed NYCDOT to break away from old reliances on twisted pair cable connections, which have increased considerably in price in recent times.

“The costs rose from something like $80 per pair to circa $130, which meant looking for an alternative,” says Rausch. “At that point it’s a case of either dealing with a phone company, putting cables in yourself, or doing something else entirely.”

The last option is the one New York went for, with TransCore putting out an RFP (request for proposal) for a city-wide network for data services. The result was the NYCWiN with TransCore working with the winning supplier 4057 Northrop Grumman to provide a secure connection to the city’s TMC.

However, it is New York’s advanced solid state traffic controllers (ASTCs) that Rausch repeatedly comes back to as the “key platform”.
 
The ASTCs, supplied by 7196 Peek Traffic US, are a bespoke design for New York, but compliant with NTCIP communications standards and based on ATC controller standards.

The city has procured around 10,000 of these units so far and is expected to have them at all 12,000 of its intersections in due course.

“The controllers support interval and phase-based operation and give one heck of a lot of computational capability in the field,” Rausch says.

“All of the building blocks are parallel efforts, all parts of an overall plan,” he continues. “The controllers, for instance, are a key part of the overall effort because without these, there would be little we could do for advancing traffic control in the city.”

Procurement of the ASTCs has been done gradually, in phases numbering several thousand units at a time, which has helped NYCDOT secure a very good price, says Rausch. The phased introduction has also necessitated recognition of legacy systems and the need for compatibility with older controllers.

“The game plan included transitioning,” Rausch says. This has included feeding back to NTCIP working groups details on the systems running the city’s Midtown in Motion project, because these standards previously did not support the concept of adaptive control. “Nothing here is secretive or proprietary. Bidding for software and installations is open,” Rausch adds.

“New York has done some very advanced things, but the greatest challenge is perhaps dealing with the implications of the magnitude of the overall system. With 12,000 intersections it is not unusual to have 30 to 50 fail in one day for whatever reason. The big challenge is keeping the system running. Operators have to be given the tools to be responsive in troubleshooting problems.”

Related Content

  • Thales builds on Canadian connection for transit R&D
    June 20, 2016
    The Canadian province of Ontario is continuing to benefit from its ongoing investment in transit R&D. David Crawford looks at the impact of new investment. Developing the next generation of urban rail signalling solutions worldwide, with the emphasis on transit security and efficiency, is the goal of a recently-created business partnership between the government of the Canadian province of Ontario and Thales Canada. The wholly-owned subsidiary of the France-HQ'd global defence, aerospace and transportation
  • Los Angeles Express Lanes links multiple modes of transportation
    January 25, 2012
    The Big Apple's loss is the City of Angels's gain, according to Ken Philmus
  • Missouri’s smart solution for rural road monitoring
    July 7, 2017
    David Crawford sees how Missouri is using commercially available information to rapidly improve monitoring and driver information on rural highways. Missouri is a predominantly rural state with the second largest number of farms in the country and agriculture the main occupation in 97 of its 114 counties. US statistics starkly reveal how road accidents in rural areas tend to be more serious than in urban regions and of the 32,000 US motorists killed each year, 54% die on roads in rural areas even though onl
  • Autonomous driving – what can we really expect?
    June 6, 2016
    Dave Marples of Technolution BV looks beyond the hype to the practical implementation of autonomous vehicles. Having looked at the development of this sector for some time, I am concerned about the current state of autonomous driving development as engineering (and marketing) have run way ahead of the wider systemic, and legislative, requirements to support an autonomous future.