Skip to main content

Advanced controllers standing out in A crowd

TransCore has been helping New York City’s Department of Transportation (NYDOT) with its ITS efforts since the early 1980s, via various consultancy services contracts. The company is currently working for the city under an IDIQ (indefinite quantity) contract and a separate ITS maintenance contract. According to TransCore vice president Bob Rausch, who has witnessed much of New York’s ITS development, the three main ‘building blocks’ of the city’s ITS infrastructure have developed simultaneously over recent
February 28, 2013 Read time: 3 mins
Peek Traffic advanced solid state traffic controller: 10,000 have been procured so far and all 12,000 intersections will be  fitted out eventually

TransCore has been helping New York City’s Department of Transportation (NYDOT) with its ITS efforts since the early 1980s, via various consultancy services contracts. The company is currently working for the city under an IDIQ (indefinite quantity) contract and a separate ITS maintenance contract.

According to 139 Transcore vice president Bob Rausch, who has witnessed much of New York’s ITS development, the three main ‘building blocks’ of the city’s ITS infrastructure have developed simultaneously over recent years.

The city’s Traffic Management Centre in Queens is undoubtedly a key part of the operation. NYCDOT’s operations staff are based there, with the software systems for monitoring and managing the city’s streets; and sharing the facility with the New York City Joint Traffic Management Centre.

The NYCWiN wireless network is also a vital development of recent times. This has provided a massive uplift in connectivity and capability for the city. It has also allowed NYCDOT to break away from old reliances on twisted pair cable connections, which have increased considerably in price in recent times.

“The costs rose from something like $80 per pair to circa $130, which meant looking for an alternative,” says Rausch. “At that point it’s a case of either dealing with a phone company, putting cables in yourself, or doing something else entirely.”

The last option is the one New York went for, with TransCore putting out an RFP (request for proposal) for a city-wide network for data services. The result was the NYCWiN with TransCore working with the winning supplier 4057 Northrop Grumman to provide a secure connection to the city’s TMC.

However, it is New York’s advanced solid state traffic controllers (ASTCs) that Rausch repeatedly comes back to as the “key platform”.
 
The ASTCs, supplied by 7196 Peek Traffic US, are a bespoke design for New York, but compliant with NTCIP communications standards and based on ATC controller standards.

The city has procured around 10,000 of these units so far and is expected to have them at all 12,000 of its intersections in due course.

“The controllers support interval and phase-based operation and give one heck of a lot of computational capability in the field,” Rausch says.

“All of the building blocks are parallel efforts, all parts of an overall plan,” he continues. “The controllers, for instance, are a key part of the overall effort because without these, there would be little we could do for advancing traffic control in the city.”

Procurement of the ASTCs has been done gradually, in phases numbering several thousand units at a time, which has helped NYCDOT secure a very good price, says Rausch. The phased introduction has also necessitated recognition of legacy systems and the need for compatibility with older controllers.

“The game plan included transitioning,” Rausch says. This has included feeding back to NTCIP working groups details on the systems running the city’s Midtown in Motion project, because these standards previously did not support the concept of adaptive control. “Nothing here is secretive or proprietary. Bidding for software and installations is open,” Rausch adds.

“New York has done some very advanced things, but the greatest challenge is perhaps dealing with the implications of the magnitude of the overall system. With 12,000 intersections it is not unusual to have 30 to 50 fail in one day for whatever reason. The big challenge is keeping the system running. Operators have to be given the tools to be responsive in troubleshooting problems.”

Related Content

  • February 1, 2012
    Growing use of PC-based systems for urban traffic control
    Siemens Mobility's Mark Bodger discusses the growing use of PC-based systems for urban traffic control. Across the ITS sector, there is a common trend of taking traffic and travel management out of the hands of bespoke solutions, realising the use of common, open-source technologies and solutions and enjoying all the attendant economies of scale and ease of use which that implies.
  • August 2, 2013
    Suppliers reshape to provide tolling and traffic management expertise
    Jason Barnes examines the trend towards single source supply of complete tolling and traffic management solutions with some senior tolling industry figures. Only a few years back, the major tolling system suppliers were aggressively positioning themselves as one-stop shops for tolling solutions and operations. No sooner has that little flurry of innovation settled than another trend has emerged – tolling companies wanting to become major ITS suppliers as well. Various tolling company seniors have in recent
  • November 15, 2024
    How ITS helped Coachella get its groove back
    California’s Coachella Valley attracts visitors to myriad music and sports events. But now an ambitious traffic management initiative aims to cut travel times and reduce emissions. Adam Hill talks to the engineers involved in the massive CV Sync project
  • April 25, 2012
    Improving traffic flow with automated urban traffic control
    Alterations to traffic signals and variable message signs are being activated to reduce congestion as soon as it occurs, through a pioneering fully automatic UTC system. Jon Masters reports In the South Yorkshire town of Barnsley in England, strategies for dealing with traffic congestion have been devised from analysis of queue data, then made to work automatically: “This represents the future of ITS for urban traffic control,” says Siemens Consultancy Services senior engineer David Carr. Over a career span