Skip to main content

Adaptive control reduces travel time, cuts congestion

Situated in San Diego County, California, the growing city of San Marcos has seen its population increase by 53.5 per cent since the turn of the century. Although this dramatic population increase has spurred economic growth bringing new business, homes and opportunities to the city, it has also increased traffic congestion along its central corridor, San Marcos Boulevard. This became the most congested arterial in the city, and, by 2006, the second-most travelled corridor in San Diego County.
January 20, 2012 Read time: 4 mins

Situated in San Diego County, California, the growing city of 798 San Marcos has seen its population increase by 53.5 per cent since the turn of the century. Although this dramatic population increase has spurred economic growth bringing new business, homes and opportunities to the city, it has also increased traffic congestion along its central corridor, San Marcos Boulevard. This became the most congested arterial in the city, and, by 2006, the second-most travelled corridor in San Diego County.

The corridor, though less than 6km long, accommodates as many as 46,000 motorists per day and is home to two schools and a multitude of businesses. The fourlane corridor has 17 major and minor intersections, including a couple of signals at freeway ramps.


The largest challenge for this corridor is three peak travel periods during the day; morning, midday and evening.

To help combat the growing traffic congestion, city traffic engineers were tasked with finding a way to improve traffic flow. The ideal solution would use ITS technologies, rather than expanding the existing four-lane roadway to the six lanes necessary to accommodate such large daily traffic volumes. From this, the 'Smart Corridor' project was born.

Project:

Reduce traffic congestion on busy arterial

Project Costs: US$671,000

Benefits:

• First-year savings: $645,000
• Lifetime savings: $5.1 million
• Delay time reduction: Up to 46 per cent
• Cost benefit ratio: 8:1

Vast improvement

"The idea behind the Smart Corridor project was to find a technology that would truly optimise the boulevard," says Omar Dayani, principal civil engineer for the City of San Marcos. "We needed to enhance traffic flow with a solution that would provide the maximum benefit to the public at a minimal cost to the city. A report by the 831 Federal Highway Administration (FHWA) showed that adaptive traffic signal control technology yielded, on average, a 10 per cent improvement in performance metrics including travel time, delay, stops, emissions and fuel consumption. 10 per cent sounded like a vast improvement to us, but we were striving for more.

After much research and consideration, my team and I chose to employ an adaptive control system, QuicTrac by 772 McCain, to maximise our results."

Deployment

The San Marcos Boulevard project was primarily funded by the Traffic Light Synchronization Program (TLSP) with a 15 per cent local match. The deployment went through two stages of optimisation.

First, the city used historical traffic flow data to better coordinate signal timing along the corridor. After the initial stage was successfully installed and working, the city's consulting firm laid the groundwork for phase two: adaptive control software. The adaptive software took the coordinated signal timing a step further by capturing and using realtime traffic conditions to optimise timing along the corridor. The system went through several rounds of testing and tweaks before it was fully operational.

"Every highly travelled arterial has its challenges different from the next, so it is imperative to choose a software partner that will work with your city's specific conditions," says Jason Stack, principal for Stack Traffic Consulting.

System results

Following the implementation of adaptive software, the city conducted a data analysis to determine the success of the project. Results showed significant improvements in delay times and corridor speed. The findings indicated that commuters driving the corridor experienced results as high as a 46 per cent and 39.1 per cent reduction in delay time and stops, respectively. Averaged over the three peak periods, and considering travel in both directions, the system yielded 19.5 per cent fewer stops, a 5.8 per cent speed increase, and a 7.1 per cent reduction in fuel consumption.

"Results for the adaptive software system met our expectations," states Omar. "The study indicated a 46 per cent reduction in delay time in the eastbound direction (the peak direction) during the evening peak period. That means less stop-and-go traffic yielding reduced travel times, emissions and probability of accidents. However, there was no significant improvement in westbound direction during this period." The City of San Marcos undertook a financial analysis which concluded total savings of $645,000 in the first year and $5.1 million over the lifetime of the project, with a benefit:cost ratio of 8:1. The calculations included cost benefits of travel time savings, fuel consumption savings, and reduced emissions of reactive organic gases, nitrogen oxides, particulate matter (PM10s), and carbon dioxide. An additional cost, not calculated in this report, is the health impact that congestion plays on city residents, recently quantified in The Public Health Costs of Traffic Congestion Study by Harvard University. The study shows that traffic congestion-related gas emissions caused approximately 3,000 premature deaths in 2005 with a total social cost of $24 billion in healthcare-related expenses. The bottom line is that by employing adaptive signal control software, the city of San Marcos effectively reduced traffic congestion, saving the community time, money, and healthcare-related expenses.

For more information on companies in this article

Related Content

  • Econolite Centracs travel time module deployed in Florida
    August 24, 2012
    Econolite has announced that Lee County, Florida, has harnessed the travel time module of its Centracs advanced transportation management system (ATMS) for the deployment of its BlueToad (Bluetooth Travel-time Origination and Destination) system to actively monitor travel times and road speeds. The ATMS was installed in 2011, as part of Lee County’s signal re-timing project for which the county’s DoT received an ‘A’ grade in the 2012 National Transportation Operations Coalition (NTOC) National Traffic Signa
  • Dynniq tests virtual tool for air quality evaluation and monitoring
    June 23, 2016
    An air quality evaluation system that utilises existing data has been modelled on the UK’s motorways and tested in Manchester as Peter Kirby and Paul Grayston describe. It has long been known that emissions from road transport are the principal source of NO2 pollution, especially in the urban environment, and that appropriate transport management can play a big role in meeting environment and public health objectives.
  • Reducing incident clear up times, saving money
    January 24, 2012
    In 2007 in Atlanta, Georgia, it took over four hours to open the road after a major commercial vehicle incident. Not any more. Four years ago the Texas Transportation Institute (TTI) cited Atlanta, Georgia as the third-most congested city in the United States. Each traveller in metro Atlanta lost an incredible 57 hours a year to traffic delays, wasting 40 gallons of fuel while sitting in traffic. In 2007, it took nearly four and a half hours to open travel lanes after an average tractor-trailer incident. Th
  • Improving urban traffic control in Atlanta
    January 27, 2012
    Hugh Colton, Georgia DOT details move to improve urban traffic control in the Atlanta area. With a significant proportion of traffic using freeways and toll-ways, along with a significant investment in roadway infrastructure, urban arterials are often the poor relation when it comes to ITS investment. Hitherto the primary means of Urban Traffic Control (UTC) has been the ubiquitous traffic signal. Many traffic signals still operate in a standalone mode and traffic detection is often broken, leaving the sign