Skip to main content

Wireless charging project could change perceptions of electric vehicles

A two-year pilot project has begun in London with taxi firm Addison Lee and electric vehicle (EV) manufacturer Renault, which uses the principle of magnetic induction to jump electricity from a base station direct to the vehicle’s battery to deliver wireless charging. The charging technology being used is called Halo and has been developed by mobile innovations company Qualcomm, the organisation responsible for processors powering the latest generation of smartphones and tablets. ‘EV drivers will opt for th
October 10, 2012 Read time: 3 mins
A two-year pilot project has begun in London with taxi firm 6687 Addison Lee and electric vehicle (EV) manufacturer 2453 Renault, which uses the principle of magnetic induction to jump electricity from a base station direct to the vehicle’s battery to deliver wireless charging.

The charging technology being used is called Halo and has been developed by mobile innovations company 213 Qualcomm, the organisation responsible for processors powering the latest generation of smartphones and tablets. ‘EV drivers will opt for the simplicity of wireless charging because there’s no fuss from dirty cables that are difficult to handle in the cold and wet,’ says a Qualcomm spokesman.

Halo consists of a black pad, about the size and thickness of a newspaper, positioned centrally in a parking bay and either laid flat on the tarmac or buried slightly beneath it. The electricity running through the pad creates a virtual bubble above it and as long as the receiver unit on the car is inside that perimeter, the battery will automatically power up.

As the car approaches a Halo-enabled parking bay, it establishes a Bluetooth connection with the control unit and an alignment display switches from red to green to; after a few seconds, the screen changes to confirm power is going into the battery.

The system is currently configured to accept a domestic power supply, so it takes eight hours to charge a vehicle, although the development of a more advanced unit could reduce that time to around 90 minutes.

Using a standard EV, the Delta E4, designed and built by 6688 Delta Motorsport, that has been modified to use the wireless system, impressive results have apparently been obtained: when the battery is fully charged, it has a 140 mile range, reaches 60mph in around 6.5 seconds and has a top speed in excess of 100mph.

The Delta E4’s interior has a centrally mounted touch-screen interface, slightly smaller than an iPad, which controls everything from the audio to the air conditioning and also oversees the charging procedure.

Renault, which is supplying cars for the trial, has invested hugely in electric vehicles and is aiming to be the first mass-market manufacturer to offer a completely zero-emission model range.  Jacques Hebrard, Renault’s advanced projects director, says, “Our participation complements our European research project to demonstrate wireless induction charging of electric vehicles in a public environment with a high level of performance and safety.”

Related Content

  • June 13, 2014
    EV inductive charging set to gain traction
    New analysis from Frost & Sullivan, Strategic Analysis of Inductive Charging for Global Electric Vehicles (EV) Market, finds that the total market for inductive charging is expected to experience a compound annual growth rate of 126.6 per cent from 2012 to 2020, with approximately 351,900 units likely to be sold. Inductive charging will account for 1.2 per cent of both public and residential charging in North America and more than 2.6 per cent in Europe. Residential charging will be the most popular method,
  • February 8, 2017
    Hydrogen Mobility Europe deploys first 100 zero-emission vehicles
    Hydrogen Mobility Europe (H2ME), the multi-country, multi-partner project which aims to demonstrate that hydrogen can support Europe’s future transport demands, has deployed its first 100 fuel cell electric vehicles (FCEVs) deployed by H2ME in Germany, France and the UK. H2ME brings together eight European countries to address the actions required to make the hydrogen mobility sector ready for market. H2ME plans to perform large-scale market tests of hydrogen refuelling infrastructure and deploy passeng
  • July 13, 2015
    Winners in electric vehicle batteries
    According to market analyst IDTechEx, which tracks the development of 45 electric vehicle categories and not just electric cars, there are now lithium-ion battery options for everything from forklifts and mobility vehicles for the disabled to e-bikes. Indeed, almost all the e-bikes in the West and Japan use them. 8000 forklifts in the USA have fuel cells with lithium-ion batteries though the Toyota Mirai fuel cell car and the Prius hybrid car still use NiMH. Whilst capturing market in micro hybrid cars,
  • April 2, 2019
    WiTricity and Furukawa to trial wireless EV charging system
    WiTricity is to test an advanced wireless charging system prototype for electric vehicles (EVs) using materials and components developed by Japanese supplier Furukawa Electric. WiTricity says Furukawa offers copper wiring and thermal components which help otpimise the cost and performance of wireless charging, thereby increasing the adoption of wireless charging by carmakers and charging infrastructure providers. The partners will test WiTricity’s Drive 11 park and charge system, designed for intero