Skip to main content

Vital Technology data comms network deployed at Dublin Port Tunnel

Vital Technology has supplied a data communications network system to Egis Road & Tunnel Operation Ireland (ERTO) for the Dublin Port Tunnel which opened to traffic in 2007 and is the longest urban tunnel in Europe as well as the largest civil engineering project ever undertaken in Ireland. While core components are proving durable, communication systems became subject to early obsolescence and were causing networking problems and unscheduled closures which prompted the upgrade.
July 13, 2012 Read time: 3 mins
6028 Vital Technology Ltd has supplied a data communications network system to Egis Road & Tunnel Operation Ireland (ERTO) for the Dublin Port Tunnel which opened to traffic in 2007 and is the longest urban tunnel in Europe as well as the largest civil engineering project ever undertaken in Ireland. While core components are proving durable, communication systems became subject to early obsolescence and were causing networking problems and unscheduled closures which prompted the upgrade.

Vital Technology has delivered a scalable, resilient, fault-tolerant system with dual redundancy across data networking and SCADA subsystems. The network uses 1028 Cisco components and manages a broad range of subsystems including CCTV surveillance from 311 Bosch whose analogue cameras are attached to blade encoders. The CCTV operates on a ‘one-to-many’ multicasting basis whereby the video is sent to a core switch whose artificial intelligence decides where to forward the stream.

Other principal subsystems in use at the Dublin Port Tunnel include public address & voice alarm (PA/VA) which is benefiting from a proprietary protocol by audio specialists Peavey.  This solution digitises messages over exceptional relay distances of up to 4.5km before the information is converted into analogue data at the core and put through a standard PA unit.

As Vincent Byrne, control systems manager at ERTO, explains, “The sensing technology in any major road tunnel is extensive, with equipment detecting carbon monoxide, carbon dioxide and nitric oxide. At this site, all these detection units are wired back to remote, dedicated industrial PCs which control the I/O. These remote units are located approximately one kilometre apart, each dealing with up to 300 pieces of input and output, and integrated into the Vital network.

“The Vital and ERTO engineers had to segregate the network both horizontally and vertically. There were VLANs whose behaviour was dependent on what equipment type was being used. Add to this the Layer 3 switching and the unusual demand of multicasting CCTV, and it will be seen that the complexity of the project was successively compounded. This was done to ensure that a failure of a single device would never impact upon tunnel availability and safety. Vital’s response to the brief was impressive and the solution has proved successful in the field,” Byrne said.

Crucially, Vital managed to reuse existing fibre optic cabling and in a manner that made the network more resilient by creating a redundant ring topology. Another challenge was overcoming persistent problems with the legacy IP-addressing scheme.

For more information on companies in this article

Related Content

  • The role of GIS in climate change resiliency
    May 29, 2014
    Climate change will pose global and local challenges and that includes risks to the transportation infrastructure. Climate change adaptation and resiliency has captured the attention of the transportation community for some time now. Because transportation infrastructure is often designed to last for 30, 50, or 100 years or even longer, transportation professionals are concerned not only about the impact on our existing investments, but also how to design more durable transportation systems for the future
  • Development of cooperative driving applications for work zones
    July 17, 2012
    The German AKTIV project is researching several cooperative driving applications for use in work zones. PTV's Michael Ortgiese details progress. The steep increases in traffic volumes predicted back in the early 1990s have unfortunately been proven to be more than accurate. In Germany, the AKTIV project continues to look into cooperative technologies' potential to reduce the impact of those increased traffic volumes and keep traffic moving despite limitations in infrastructure capacity.
  • Pöyry to implement tunnel renovation work
    October 7, 2015
    The Swiss Federal Roads Office (FEDRO) has awarded Pöyry the engineering, project management and site supervision services assignment for the complete renewal of all operational and safety equipment in the Gamsen Tunnel close to Visp, in the canton of Valais, Switzerland. Pöyry will carry out the conceptual design, detailed engineering, management of permission procedures, tender support, site supervision and commissioning services for the completion of all operational and safety equipment and signalling
  • Europe’s Sartre road train project takes to public roads
    May 29, 2012
    A road train, comprised of three Volvo cars plus one truck automatically driving in convoy behind a lead vehicle, has operated on a public motorway among other road users. The historic test on a motorway outside Barcelona, Spain, took place last week and was pronounced a success. “This is a very significant milestone in the development of safe road train technology,” commented Sartre project director, Tom Robinson of Ricardo. “For the very first time we have been able to demonstrate a convoy of autonomousl