Skip to main content

Utah university demonstrates wireless electric bus

Utah State University (USU) in the US has developed what it claims is the first and only wirelessly charged electric bus designed and developed exclusively by a North American research organisation. Nicknamed the Aggie Bus, the new vehicle is also the first of its kind in the world to achieve key performance standards for a wirelessly charged vehicle.
November 19, 2012 Read time: 2 mins
Utah State University (USU) in the US has developed what it claims is the first and only wirelessly charged electric bus designed and developed exclusively by a North American research organisation.  Nicknamed the Aggie Bus, the new vehicle is also the first of its kind in the world to achieve key performance standards for a wirelessly charged vehicle.

The breakthrough prompted Robert T Bhunin, the Utah State University vice president of commercialisation and regional development, to state that the Aggie Bus is “a historic achievement and a great leap forward in the science and engineering related to electric vehicles.”

The new electric bus demonstrates that wireless charging is a viable option, at least for vehicles that make scheduled stops at pre-determined locations, such as bus stops.
The bus simply stops over a pad in the ground to recharge its batteries. Without wireless capabilities, the driver would have to get out of the bus to plug in manually.  USU also notes that, in terms of maintenance, the wireless system involves significant savings over plug-in systems, since it involves no moving parts and virtually no wear and tear. The system is also weatherproof and has no unsightly wires.

With a reliable network of frequent recharges, the bus can run all day without having to charge a full of load on-board batteries. USU says that makes it the equal of any standard diesel or compressed natural gas bus.

USU claims the electric is a robust prototype for a commercially viable vehicle.  Indeed, the 5583 Utah Transit Authority has committed to a partnership for launching a full scale demonstration of the new technology by the middle of 2013, consisting of a 40-foot transit bus on a public transit route through the campus of another state institution, the University of Utah in Salt Lake City.

For more information on companies in this article

Related Content

  • AVL trial in the UK based on ticketing platform
    August 3, 2012
    Vix UK has worked with Go North East (GNE) and Nexus to carry out a successful trial of automatic vehicle location (AVL) technology integrated into the Vix ticketing platform. Following on from a small scale pilot for Nexus (the Tyne and Wear Passenger Transport Executive), which provided a showcase for the interaction between major real-time passenger information systems, the trial was successfully accepted and signed off by Nexus earlier this year.
  • Watch your step: the sidewalk robots are here
    March 14, 2023
    The way we order and pay for goods has changed radically – but what about how those goods are delivered? Gordon Feller looks at how sidewalk robots might reshape the urban landscape
  • Momentum deploys 200 kW wireless charging system for CARTA buses
    July 16, 2018
    Momentum Dynamics says its 200 kW wireless charging system will allow the Chattanooga Area Regional Transportation Authority’s (CARTA’s) Shuttle Park to travel longer distances. The solution will charge buses automatically while loading and unloading passengers in south-eastern Tennessee. The roadway system recharges buses multiple times during the scheduled stops and allows them to complete another circulation loop, Momentum adds. Going forward, Momentum intends to install additional wireless charg
  • Kapsch ‘opens the way’ to interoperability
    July 30, 2013
    Richard Turnock, chief technology officer of Kapsch TrafficCom North America explains what advantages its newly-opened TDM protocol can offer as a US-wide standard for tolling interoperability. The electronic tolling industry across the United States is evolving. Historically it was characterised by clusters of interoperability where a motorist may be able to use the same transponder across a large area, such as the 15-State E-ZPass system, or be confined to a single State system. Now, however, the industry