Skip to main content

Utah university demonstrates wireless electric bus

Utah State University (USU) in the US has developed what it claims is the first and only wirelessly charged electric bus designed and developed exclusively by a North American research organisation. Nicknamed the Aggie Bus, the new vehicle is also the first of its kind in the world to achieve key performance standards for a wirelessly charged vehicle.
November 19, 2012 Read time: 2 mins
Utah State University (USU) in the US has developed what it claims is the first and only wirelessly charged electric bus designed and developed exclusively by a North American research organisation.  Nicknamed the Aggie Bus, the new vehicle is also the first of its kind in the world to achieve key performance standards for a wirelessly charged vehicle.

The breakthrough prompted Robert T Bhunin, the Utah State University vice president of commercialisation and regional development, to state that the Aggie Bus is “a historic achievement and a great leap forward in the science and engineering related to electric vehicles.”

The new electric bus demonstrates that wireless charging is a viable option, at least for vehicles that make scheduled stops at pre-determined locations, such as bus stops.
The bus simply stops over a pad in the ground to recharge its batteries. Without wireless capabilities, the driver would have to get out of the bus to plug in manually.  USU also notes that, in terms of maintenance, the wireless system involves significant savings over plug-in systems, since it involves no moving parts and virtually no wear and tear. The system is also weatherproof and has no unsightly wires.

With a reliable network of frequent recharges, the bus can run all day without having to charge a full of load on-board batteries. USU says that makes it the equal of any standard diesel or compressed natural gas bus.

USU claims the electric is a robust prototype for a commercially viable vehicle.  Indeed, the 5583 Utah Transit Authority has committed to a partnership for launching a full scale demonstration of the new technology by the middle of 2013, consisting of a 40-foot transit bus on a public transit route through the campus of another state institution, the University of Utah in Salt Lake City.

For more information on companies in this article

Related Content

  • New Flyer deploys sustainable transport to TransLink
    June 7, 2018
    New Flyer Industries Canada will deploy 58 compressed natural gas (CNG) buses to British Columbia to meet public demand for sustainable transportation. The order was placed by the South Coast British Columbia Transportation Authority (TransLink). These vehicles will be used by TransLink's operating firm Coast Mountain Bus Company. The order comprises 47 CNG forty-foot transit buses and 11 diesel-electric hybrid sixty-foot transit models.
  • New York’s MTA tests new safety technology on buses
    October 5, 2015
    As part of the MTA’s ongoing commitment to improving safety across all agencies and in coordination with New York City’s Vision Zero plan, MTA New York City Transit has begun to test new technologies aimed at improving safety for drivers, bus customers and pedestrians. The 60-day tests of pedestrian turn warning and collision avoidance systems will determine if a full pilot of one or both systems can proceed in 2016. NYC Transit’s Department of Buses is testing two systems on six buses: a pedestrian turn
  • Gearing up for IntelliDrive cooperative traffic management
    February 1, 2012
    Beginning in the first quarter of 2010 it became evident that the IntelliDrivesm programme direction had been reestablished, by the USDOT's ITS Joint Program Office (JPO), after being adrift for a few years. The programme was now moving toward a deployment future and with a much broader stakeholder involvement than it had exhibited previously. By today not only is it evident that the programme was reestablished with a renewed emphasis on deployment, it is also apparent that it is moving along at a faster pa
  • Artificial Intelligence applications for commercial vehicle operations
    December 28, 2021
    The combination of machine learning, deep neural networks and computer vision provides opportunities to address in new ways an increasing range of functions that are a part of commercial vehicle operations. Here, IRD’s Rish Malhotra details how.